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1. Introduction

1.1. The objectives of Normaliz

The program Normaliz is a tool for computing the Hilbert bases and enumerative data of
rational cones and, more generally, sets of lattice points in rational polyhedra. Moreover,
Normaliz computes algebraic polyhedra, i.e., polyhedra defined over algebraic number fields
embedded into R.

Since version 3.10.0 Normaliz can also compute data of general affine monoids: their minimal
systems of generators, Hilbert series, Markov and Grobner bases of defining ideals and some
local data, such as the singular locus.

The mathematical background and the terminology of this manual are explained in Appendix [A]
For a thorough treatment of the mathematics involved we refer the reader to [[11]. The termi-

nology follows [[11]]. For algorithms of Normaliz see [8]], [9], [12], [13], [14], [15], [17], [18],

and [19]. Some new developments are briefly explained in this manual.

Both polyhedra and lattices can be given by

(1) systems of generators and/or
(2) constraints.

Since version 3.1, cones need not be pointed and polyhedra need not have vertices, but are
allowed to contain a positive-dimensional affine subspace.

Affine monoids can be defined by generators and by toric ideals, in other words, by binomial
equations.

In order to describe a rational polyhedron by generators, one specifies a finite set of vertices
X1,..., X, € Q¢ and a set Viy---s¥m € 74 generating a rational cone C. The polyhedron defined
by these generators is

P =conv(xy,...,x,)+C, C=Roy;+--+Ryiyy.
An affine lattice defined by generators is a subset of Z¢ given as
L=w+Ly, Lo=%Zz1+---+ 2z, w,zl,...,z,GZd.

Constraints defining a polyhedron are affine-linear inequalities with integral coefficients, and
the constraints for an affine lattice are affine-linear diophantine equations and congruences.
The conversion between generators and constraints is an important task of Normaliz.

The first main goal of Normaliz is to compute a system of generators for
PNL.

The minimal system of generators of the monoid M = C N Ly is the Hilbert basis Hilb(M) of
M. The homogeneous case, in which P = C and L = L, is undoubtedly the most important
one, and in this case Hilb(M) is the system of generators to be computed. In the general case
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the system of generators consists of Hilb(M) and finitely many points uy,...,u; € PN L such
that

N
PAL=|Juj+M.
j=1

The second main goal are enumerative data that depend on a grading of the ambient lattice.
Normaliz computes the Hilbert series and the Hilbert quasipolynomial of the monoid or set
of lattice points in a polyhedron. In combinatorial terminology: Normaliz computes Ehrhart
series and quasipolynomials of rational polyhedra. Normaliz also computes weighted Ehrhart
series and Lebesgue integrals of polynomials over rational polytopes.

For algebraic polyhedra Normaliz realizes the computation goals above that make sense with-
out the finite generation of the monoid of lattice points in a cone: convex hull and vertex
enumeration for all algebraic polyhedra, and, for polytopes, lattice points, volumes and trian-
gulations.

The computation goals of Normaliz can be set by the user. In particular, they can be restricted
to subtasks, such as the lattice points in a polytope or the leading coefficient of the Hilbert
(quasi)polynomial.

Performance data of Normaliz can be found in [9]], [[14], [[15] and [I16].

Acknowledgment. In2013-2016 the development of Normaliz has been supported by the DFG
SPP 1489 “Algorithmische und experimentelle Methoden in Algebra, Geometrie und Zahlen-
theorie”. From November 2020 to October 2021 Normaliz is supported by the DFG project
“Normaliz: development and long term sustainability”.

1.2. Platforms, implementation and access from other systems

Executables for Normaliz are provided for Mac OS, Linux and MS Windows. If the executa-
bles prepared cannot be run on your system, then you can compile Normaliz yourself (see
Section [I2). The statically linked Linux binaries provided by us can be run in the Linux
subsystem of MS Windows 10. A Docker image of Normaliz is available.

Normaliz is written in C++, and should be compilable on every system that has a GCC com-
patible compiler. It uses the standard package GMP (see Section [I2). The parallelization is
based on OpenMP. CoCoALIb [2] and Flint [28] are optional packages. The computation of
algebraic polytopes is based on e-antic [23]], antic [27]] and arb [30]].

Normaliz consists of two parts: the front end “normaliz” for input and output and the C++
library “libnormaliz” that does the computations.

Normaliz can be accessed from the interactive general purpose system PYTHON via the in-
terface PYNORMALIZ written by Sebastian Gutsche with contributions by Justin Shenk and
Richard Sieg.

Normaliz can also be accessed from the following systems:

e SINGULAR via the library normaliz.lib,
e MACAULAY?2 via the package Normaliz.m2,
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CoOCOA via an external library and libnormaliz,

GAP via the GAP package NORMALIZINTERFACE [235] which uses libnormaliz,
POLYMAKE (thanks to the POLYMAKE team),

SAGEMATH via PyNormaliz.

The Singular and Macaulay?2 interfaces are contained in the Normaliz distribution. At present,
their functionality is limited to Normaliz 2.10. Nevertheless they profit from newer versions.

Furthermore, Normaliz is used by B. Burton’s system REGINA and in SECDEC by S. Borowka
et al.

Normaliz does not have its own interactive shell. We recommend the access via PyNormaliz,
GAP or SageMath for interactive use. PYNORMALIZ is documented in Appendix

1.3. Major changes relative to version 3.8.0

In 3.8.0:

(1) Computation of automorphism groups.
(2) Computation goal Incidence added.
(3) SCIP removed.
3.8.1 fixes a bug in the face lattice computation.
In 3.8.2:
(1) Replacement of boost: :dynamic_bitset by own class.
(2) Improvements in the convex hull algorithm.
(3) Further tests.
(4) Improvements of build infrastructure.
3.8.3 is a technical release.
In 3.8.4:
(1) Bug fixes.
(2) Further improvements of the build infrastructure and additional tests.
(3) Extended use of precomputed data.
(4) New package layout for the releases.
In 3.8.5:
(1) Bug fixes.
(2) Improvements in several algorithms.
(3) Substantial improvement in the computation of integer hulls.
(4) Refined triangulations added.

3.8.6 is a technical prerelease.
In 3.8.7:

(1) Addition of computation goals IsSEmptySemiopen and CoveringFace
(2) Source file structure changed
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(3) Improvement in finding preexisting dependencies
In 3.8.8:

(1) Dual versions of face lattice, f-vector and incidence
(2) Rational lattices

In 3.8.9:

(1) ExtremeRaysFloat introduced
(2) TriangulationGenerators replace Generators
(3) Improved stability for interactive use

In 3.8.10:

(1) Management of triangulations and related decompositions completely revised.
(2) Documentation of PyNormaliz added.
(3) SHA256 hash values for certain data.

In 3.9.0:

(1) Volume and integral computation by signed decomposition.
(2) Variant tExploitIsosMult added to volume by descent.

(3) AmbientAutomorphisms and InputAutomorphisms added.
(4) PlacingTriangulations and PullingTriangulation added.
(5) e-antic updated to version 1.0.1.

In 3.9.1:

(1) Better handling of distributed computation.
(2) Python 2 no longer supported.

In 3.9.2:

(1) Compilation for MS Windows under MSY'S; MPIR no longer forced under Windows.
(2) Bug fixes and improvements.

(3) Extension of sparse vectors to ranges of indices and unit_matrix as an input type.
(4) Output of an input fie with precomputed data.

(5) libnormaliz function that constructs a cone from an input file.

In 3.9.3:
(1) Bug fixes.
(2) Compilation for MS Windows under MSYS with all optional packages.
(3) Option NoHilbertBasisOutput added.
(4) Short reference for Normaliz added.
(5) normaliz.lib for Singular updated.
n 3.9.4:

(1) Polynomial constraints for lattice points.
(2) Coarse project-and-lift for positive systems.
(3) Patching variant for coarse project-and-lift .
(4) Input directive convert_equations.
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In 3.10.0:

(1) Improvements in patching algorithm with polynomoial equations. item Input types
monoid, lattice ideal (changed), toric_ideal, normal_toric_ideal.

(2) Markov and Grébnber bases of lattice ideals.

(3) Hilbert series for all positive affine monoids.

(4) Computation of the singular locus.

In 3.10.1:

(1) Weight vector for Grobner bases of lattice ideals.

(2) Substantial improvements in the patching variant of project-and-lift.
(3) Time bound can be set (so far only in project-and-lift)

(4) Option NoOutputOnlInterrupt.

See the file CHANGELOG in the Normaliz directory for more information on the history of Nor-
maliz.

1.4. Future extensions
(1) Exploitation of automorphism groups,
(2) addition of linear programming methods,
(3) multigraded Hilbert series,
(4) access from further systems,
(5) heterogeneous parallelization,
1.5. Download and installation
In order to install Normaliz you should have a look at
https://normaliz.uos.de/download/.
It guides you to our GitHub repository

https://github.com/Normaliz/Normaliz/releases.

There you will also find binary releases for Linux, Mac OS and MS Windows. Unzip the
package for your system in a directory of your choice. In it, a directory normaliz-3.10.1
(called Normaliz directory in the following) is created with several subdirectories.

Another source for the executables of all three systems is the package manager Conda. See
https://github.com/conda-forge/normaliz- feedstock
An alternative to the (system dependent) executable is the

Docker image normaliz/normaliz
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that is automatically downloaded from the Docker repository if you ask for it. (In the Docker
container, the Normaliz directory is called Normaliz, independently of the version number.)

See Section I 1] for more details on the distribution and the Docker image.

A source package is available as well. See Section [I2]if you want to compile Normaliz your-

self.

1.6. Exploring Normaliz online

You can explore Normaliz online at
https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master.

(may take a while.) The button “New” offers you a terminal. Choose it, and you will be in a
Docker container based on the Normaliz Docker image. Your username is norm, and Normaliz
is contained in the subdirectory Normaliz of your home directory. Moreover, it is installed,
and can be invoked by the command normaliz from anywhere. Just type

normaliz -c Normaliz/example/rational

to run a small computation. You van also have a Python shell and run PyNormaliz or study
the tutorial of PyNormaliz (a Jupyter notebook).

It is possible to upload and download files, but please refrain from using Binder as a platform
for heavy computations.
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2. Discrete convex geometry by examples

2.1. Terminology

For the precise interpretation of parts of the Normaliz output some terminology is necessary,
but this section can be skipped at first reading, and the user can come back to it when it
becomes necessary. We will give less formal descriptions along the way. The following applies
to rational polyhedra. Algebraic polyhedra are discussed in Section [§]

As pointed out in the introduction, Normaliz “computes” intersections PN L where P is a
rational polyhedron in R? and L is an affine sublattice of Z¢. It proceeds as follows:

(1) If the input is inhomogeneous, then it is homogenized by introducing a homogenizing
coordinate: the polyhedron P is replaced by the cone C(P): it is the closure of R (P X
{1}) in R*!, Similarly L is replaced by L = Z(L x {1}). In the homogeneous case in
which P is a cone and L is a subgroup of Z4, we set C(P) = P and L = L.

(2) The computations take place in the efficient lattice

E = LNRC(P).

where RC(P) is the linear subspace generated by C(P). The internal coordinates are
chosen with respect to a basis of [E. The efficient cone is

C =R (C(P)NE).

(3) Inhomogeneous computations are truncated using the dehomogenization (defined im-
plicitly or explicitly).

(4) The final step is the conversion to the original coordinates. Note that we must use the
coordinates of R*! if homogenization has been necessary, simply because some output
vectors may be non-integral otherwise.

Normaliz computes inequalities, equations and congruences defining E and C. The output
contains only those constraints that are really needed. They must always be used jointly: the
equations and congruences define [E, and the equations and inequalities define C. Altogether
they define the monoid M = CNE. In the homogeneous case this is the monoid to be com-
puted. In the inhomogeneous case we must intersect M with the dehomogenizing hyperplane
to obtain PN L.

In this section, only pointed cones (and polyhedra with vertices) will be discussed. Nonpointed
cones will be addressed in Section
2.2. Practical preparations

You may find it comfortable to run Normaliz via the GUI jNormaliz [4]. In the Normaliz
directory open jNormaliz by clicking jNormaliz.jar in the appropriate way. (We assume that
Java is installed on your machine.) In the jNormaliz file dialogue choose one of the input files
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File Edit Normaliz Help
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Elapsed time: - Physical mem. (free/total): 13G74.0G

Figure 1: jNormaliz

in the subdirectory example, say small.in, and press Run. In the console window you can
watch Normaliz at work. Finally inspect the output window for the results.

The menus and dialogues of jNormaliz are self explanatory, but you can also consult the
documentation [4]] via the help menu.

Remark The jNormaliz drop down menus do presently not cover all options of Normaliz. But
since all computation goals and algorithmic variants can be set in the input file, there is no
real restriction in using jNormaliz. The only option not reachable by jNormaliz is the output
directory (see Section [6.6)).

Moreover, one can, and often will, run Normaliz from the command line. This is fully ex-
plained in Section[6] At this point it is enough to call Normaliz by typing

normaliz -c <project>

where <project> denotes for the project to be computed. Normaliz will load the file <project>.in.
The option -c makes Normaliz to write a progress report on the terminal. Normaliz writes its
results to <project>.out.

Note that you may have to prefix normaliz by a path name, and <project> must contain a
path to the input file if it is not in the current directory. Suppose the Normaliz directory is the
current directory and we are using a Linux or Mac system. Then

./normaliz -c example/small

will run small.in from the directory example. On Windows we must change this to

.\normaliz -c example\small

The commands given above will run Normaliz with the at most 8 parallel threads. For the very
small examples in this tutorial you may want to add -x=1 to suppress parallelization. For large
examples, you can increase the number of parallel threads by -x=<N> where <N> is the number
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of threads that you want to suggest. See Section [6.3]

As long as you don’t specify a computation goal on the command line or in the input file,
Normaliz will use the default computation goals:

HilbertBasis
HilbertSeries
ClassGroup

The computation of the Hilbert series requires the explicit or implicit definition of a grading.
Normaliz does only complain that a computation goal cannot be reached if the goal has been
set explicitly. For example, if you say HilbertSeries and there is no grading, an exception
will be thrown and Normaliz terminates, but an output file with the already computed data will
be written.

Note that the spacing in the output files may have changed over time and that not all these
changes may have made their way into this manual.

Normaliz will always print the results that are obtained on the way to the computation goals
and do not require extra effort.

Appendix Bl helps you to read the console output that you have demanded by the option -c.

2.3. A cone in dimension 2

We want to investigate the cone C =R, (2,1) +R, (1,3) C R?:

This cone is defined in the input file 2cone. in:

amb_space 2
cone 2

13

21

The input tells Normaliz that the ambient space is R?, and then a cone with 2 generators is
defined, namely the cone C from above.

The figure indicates the Hilbert basis, and this is our first computation goal.
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If you prefer to consider the columns of a matrix as input vectors (or have a matrix in this

format from another system) you can use the input

amb_space 2

cone transpose 2
12

31

Note that the number 2 following transpose is now the number of columns. Later on we will

also show the use of formatted matrices.

2.3.1. The Hilbert basis

In order to compute the Hilbert basis, we run Normaliz from jNormaliz or by

./normaliz -c example/2cone

and inspect the output file:

4 Hilbert basis elements
2 extreme rays
2 support hyperplanes

Self explanatory so far.

embedding dimension = 2
rank = 2 (maximal)
external index =1
internal index = 5

original monoid is not integrally closed

in chosen lattice

The embedding dimension is the dimension of the space in which the computation is done.
The rank is the rank of the lattice E (notation as in Section [2.1). In fact, in our example E = Z2,

and therefore has rank 2.

For subgroups G C U C Z? we denote the order of the torsion subgroup of U /G by the index
of G in U. The external index is the index of the lattice E in Z¢. In our case E = Z¢, and
therefore the external index is 1. Note: the external index is 1 exactly when E is a direct

summand of Z4.

For this example and many others the original monoid is well defined: the generators of the
cone used as input are contained in [E. (This need not be the case if [E is a proper sublattice of
7%, and we let the original monoid be undefined in inhomogeneous computations.) Let G be
the subgroup generated by the original monoid. The internal index is the index of G in E.

The original monoid is integrally closed if and only if the it contains the Hilbert basis, and this
is evidently false for our example. We go on.

size of triangulation
resulting sum of |det]|s

1
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The primal algorithm of Normaliz relies on a (partial) triangulation. In our case the triangula-
tion consists of a single simplicial cone, and (the absolute value of) its determinant is 5.

No implicit grading found

If you do not define a grading explicitly, Normaliz tries to find one itself: the grading is defined
if and only if there is a linear form ¥ on [E under which all extreme rays of the efficient cone
C have value 1, and if so, v is the implicit grading. Such does not exist in our case.

The last information before we come to the vector lists:

rank of class group = 0
finite cyclic summands:
5: 1

The class group of the monoid M has rank 0, in other words, it is finite. It has one finite cyclic
summand of order 5.

This is the first instance of a multiset of integers displayed as a sequence of pairs
<n>: <m>
Such an entry says: the multiset contains the number <n> with multiplicity <m>.

Now we look at the vector lists (typeset in two columns to save space):

4 Hilbert basis elements: 2 extreme rays:

11 13

12 21

13

21 2 support hyperplanes:
-1 2
3 -1

The support hyperplanes are given by the linear forms (or inner normal vectors):

—X1 +2X2 > 07
3x1 —x2 > 0.

If the order is not fixed for some reason, Normaliz sorts vector lists as follows: (1) by degree
if a grading exists and the application makes sense, (2) lexicographically.

2.3.2. The cone by inequalities

Instead by generators, we can define the cone by the inequalities just computed (2cone_ineq. in).
We use this example to show the input of a formatted matrix:

amb_space auto
inequalities
[[-1 2] [3 -1]1
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A matrix of input type inequalities contains homogeneous inequalities. Normaliz can deter-
mine the dimension of the ambient space from the formatted matrix. Therefore we can declare
the ambient space as being “auto determined” (but amb_space 2 is not forbidden).

We get the same result as with 2cone. in except that the data depending on the original monoid
cannot be computed: the internal index and the information on the original monoid are missing
since there is no original monoid.

2.3.3. The interior

Now we want to compute the lattice points in the interior of our cone. If the cone C is given
by the inequalities A;(x) > 0 (within aff(C)), then the interior is given by the inequalities
Ai(x) > 0. Since we are interested in lattice points, we work with the inequalities 4;(x) > 1.

The input file 2cone_int.in says

amb_space 2
strict_inequalities 2
-1 2

3 -1

The strict inequalities encode the conditions

—x1+2x > 1,
3)C1 — X2 Z 1.

This is our first example of inhomogeneous input.

Note that the strict inequalities do not define the interior of the cone as a point set. They define
a (closed) polyhedron with the same lattice points as the interior.

Alternatively we could use the following two equivalent input files, in a more intuitive nota-
tion:

amb_space 2
constraints 2
-1 2>0
3-1>0
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amb_space 2
constraints 2
-1 2>=1
3-1>=1

There is an even more intuitive way to type the input file using symbolic constraints that we
will introduce in Section [2.6.2]

Normaliz homogenizes inhomogeneous computations by introducing an auxiliary homogeniz-
ing coordinate x4, 1. The polyhedron is obtained by intersecting the homogenized cone with
the hyperplane x;,.; = 1. The recession cone is the intersection with the hyperplane x;,.; = 0.
The recession monoid is the monoid of lattice points in the recession cone, and the set of lattice
points in the polyhedron is represented by its system of module generators over the recession
monoid.

Note that the homogenizing coordinate serves as the denominator for rational vectors. In our
example the recession cone is our old friend that we have already computed, and therefore we
need not comment on it.

2 module generators

4 Hilbert basis elements of recession monoid

1 vertices of polyhedron

2 extreme rays of recession cone

3 support hyperplanes of polyhedron (homogenized)

embedding dimension = 3
affine dimension of the polyhedron = 2 (maximal)
rank of recession monoid = 2

The only surprise may be the embedding dimension: Normaliz always takes the dimension
of the space in which the computation is done. It is the number of components of the output
vectors. Because of the homogenization it has increased by 1.

1
25

size of triangulation
resulting sum of |det|s

In this case the homogenized cone has stayed simplicial, but the determinant has changed.

dehomogenization:
001

The dehomogenization is the linear form 6 on the homogenized space that defines the hyper-
planes from which we get the polyhedron and the recession cone by the equations 6(x) = 1
and 8 (x) = 0, respectively. It is listed since one can also work with a user defined dehomoge-
nization.

module rank =1

This is the rank of the module of lattice points in the polyhedron over the recession monoid.
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In our case the module is an ideal, and so the rank is 1.

The output of inhomogeneous computations is always given in homogenized form. The last

coordinate is the value of the dehomogenization on the listed vectors, 1 on the module gener-

ators, 0 on the vectors in the recession monoid:

2 module generators: 4 Hilbert basis elements of recession monoid:
111 110
121 120

130

210

The module generators are (1,1) and (1,2).

1 vertices of polyhedron:
345

Indeed, the polyhedron has a single vertex, namely (3/5,4/5).

2 extreme rays of recession cone: 3 support hyperplanes of polyhedron (homoger
130 -1 2 -1
210 6 0 1

3-1-1

nized):

Two support hyperplanes are exactly those that we have used to define the polyhedron — and
it has only 2. But Normaliz always outputs the support hyperplanes that are needed for the
cone that one obtains by homogenizing the polyhedron, as indicated by “homogenized”. The
homogenizing variable is always > 0. In this case the support hyperplane (0,0, 1) is essential

for the description of the cone. Note that it need not always appear.

2.4. A lattice polytope

The file polytope.in contains

amb_space 4
polytope 4
000
200
030
005

This is a good place to mention that Normaliz also accepts matrices (and vectors) in sparse

format:

amb_space 4
polytope 4 sparse

1:2;
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2:3;
3:5;

Each input row, concluded by ;, lists the indices and the corresponding nonzero values in that
row of the matrix.

The Ehrhart monoid of the integral polytope with the 4 vertices
(0,0,0), (2,0,0), (0,3,0) and (0,0,5)

in R? is to be computed. The generators of the Ehrhart monoid are obtained by attaching a
further coordinate 1 to the vertices, and this explains amb_space 4. In fact, the input type
polytope is not only a convenient version of

cone 4

0001
2001
0301
0051

It also sets the he grading to be the last coordinate. See[#.12]below for general information on
gradings.

Running normaliz produces the file polytope.out:

19 Hilbert basis elements

18 lattice points in polytope (Hilbert basis elements of degree 1)
4 extreme rays

4 support hyperplanes

embedding dimension = 4

rank = 4 (maximal)

external index =1

internal index = 30

original monoid is not integrally closed in chosen lattice

Perhaps a surprise: the lattice points of the polytope do not yield all Hilbert basis elements.

1
30

size of triangulation
resulting sum of |det]|s

Nothing really new so far. The grading appears in the output file:

grading:
0001

degrees of extreme rays:
1: 4

Again we encounter the notation <n>: <m>: we have 4 extreme rays, all of degree 1.
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Hilbert basis elements are not of degree 1

We knew this already: the polytope is not integrally closed as defined in [[11]. Now we see the
enumerative data defined by the grading:

multiplicity = 30

Hilbert series:

114 15

denominator with 4 factors:

1: 4

degree of Hilbert Series as rational function = -2

Hilbert polynomial:
1485
with common denominator =1

The polytope has Z>-normalized volume 30 as indicated by the multiplicity (see Section
for a discussion of volumes and multiplicities). The Hilbert (or Ehrhart) function counts the
lattice points in kP, k € Z.. The corresponding generating function is a rational function H ().
For our polytope it is
1+ 14t + 15¢2
(1—2)*

The denominator is given in multiset notation: 1: 4 say that the factor (1 —¢') occurs with
multiplicity 4.

The Ehrhart polynomial (again we use a more general term in the output file) of the polytope

1S
p(k) = 144k + 8k> 4+ 5k° .

In our case it has integral coefficients, a rare exception. Therefore one usually needs a denom-
inator.

Everything that follows has already been explained.

rank of class group = 0
finite cyclic summands:
30: 1

3k >k 5k 5k 3k >k 5k 5k 3k >k 5k 5k 3k >k 5k 5k 5k %k 5k 5k 3k >k 5k 5k 5k 5k 3k 5k 3k >k 5k 5k 5k 5k >k 5k 3k 5k >k 5k 5k >k >k 5k 3k kK 5k 5k kK 5k 5k 5k >k 5k 5k 3k >k 5k 5k %k >k 5k 5k 3k kK 5k >k k

18 lattice points in polytope (Hilbert basis elements of degree 1):
0001

2001
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1 further Hilbert basis elements of higher degree:
1242

4 extreme rays: 4 support hyperplanes:
0001 -15 -10 -6 30

0051 6 0 1 0

0301 0 1 0 0

2001 1 0 0 0

The support hyperplanes give us a description of the polytope by inequalities: it is the solution
of the system of the 4 inequalities

x3>0, x>0, x>0 and 15x;+ 10x; + 6x3 < 30.

2.4.1. Only the lattice points

Suppose we want to compute only the lattice points in our polytope. In the language of
graded monoids these are the degree 1 elements, and so we add DeglElements to our input file
(polytope_degl.in):

amb_space 4

polytope 4

000

200

030

005

DeglElements

/* This is our first explicit computation goalx/

We have used this opportunity to include a comment in the input file. The computation of
lattice points in a polytope will be taken up again in Sections [2.13]and [7.2]

We lose all information on the Hilbert series, and from the Hilbert basis we only retain the
degree 1 elements.

2.5. A rational polytope

The type polytope can (now) be used for rational polytopes as well.
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We want to investigate the Ehrhart series of the triangle P with vertices

(1/2,1/2), (—1/3,—1/3), (1/4,—1/2).

For this example the procedure above yields the input file rational.in:

amb_space 3
polytope 3
1/2 1/2

-1/3 -1/3

1/4 -1/2
HilbertSeries

From the output file we only list the data of the Ehrhart series.

multiplicity = 5/8
multiplicity (float) = 0.625

Hilbert series:
10032-12211112
denominator with 3 factors:
1:' 1 2:1 12: 1

degree of Hilbert Series as rational function = -3
Hilbert series with cyclotomic denominator:

-1 -1-1-3 -4 -3 -2

cyclotomic denominator:

1: 3 2: 2 3:'1 4:1

Hilbert quasi-polynomial of period 12:

0: 48 28 15 7: 23 22 15

1: 11 22 15 8: 16 28 15

2: -20 28 15 9: 27 22 15

3: 39 22 15 10: -4 28 15

4: 32 28 15 11: 7 22 15

5: -5 22 15 with common denominator = 48
6: 12 28 15

The multiplicity is a rational number. Since in dimension 2 the normalized area (of full-
dimensional polytopes) is twice the Euclidean area, we see that P has Euclidean area 5/16.
If the multiplicity is not integral, we also print it in floating point format, This is certainly
superfluous for a fraction like 5/8, but very handy if the numerator and the denominator have
many digits.

Unlike in the case of a lattice polytope, there is no canonical choice of the denominator of the
Ehrhart series. Normaliz gives it in 2 forms. In the first form the numerator polynomial is

14363 426% — P 4200 1267 148 149 4410 4 411 4 12
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and the denominator is
(1—0)(1—13)(1—1'?).

As a rational function, H(r) has degree —3. This implies that 3P is the smallest integral
multiple of P that contains a lattice point in its interior.

Normaliz gives also a representation as a quotient of coprime polynomials with the denomi-
nator factored into cyclotomic polynomials. In this case we have

14+t 412+ +46% + 30 + 216
eI

where {; is the i-th cyclotomic polynomial ({; =t —1, & =141, =12 4+1+1, & =12 +1).

H(t) =

Normaliz transforms the representation with cyclotomic denominator into one with denomi-
nator of type (1 —r¢1)--- (1 —1¢¢"), r = rank, by choosing e, as the least common multiple of
all the orders of the cyclotomic polynomials appearing, e,_1 as the lcm of those orders that
have multiplicity > 2 etc.

There are other ways to form a suitable denominator with 3 factors 1 — ¢, for example g(z) =
(1= =31 —1*) = =P 38384 Of course, g(t) is the optimal choice in this case.
However, P is a simplex, and in general such optimal choice may not exist. We will explain
the reason for our standardization below.

Let p(k) be the number of lattice points in kP. Then p(k) is a quasipolynomial:

p(k) = po(k) + p1(k)k+ -+ + p,_y (k)K"

where the coefficients depend on &, but only to the extent that they are periodic of a certain
period € N. In our case & = 12 (the lcm of the orders of the cyclotomic polynomials).

The table giving the quasipolynomial is to be read as follows: The first column denotes the

residue class j modulo the period and the corresponding line lists the coefficients p;(j) in
ascending order of i, multiplied by the common denominator. So

7 5 5
k)=1+—k+—k k=0 (12
etc. The leading coefficient is the same for all residue classes and equals the Euclidean volume
(in this case).

Our choice of denominator for the Hilbert series is motivated by the following fact: e; is the
common period of the coefficients p,_;,..., p,—1. The user should prove this fact or at least
verify it by several examples.

Especially in the case of a simplex the representation of the Hilbert series shown so far may
not be the expected one. In fact, there is a representation in which the exponents of 7 in the
denominator are the degrees of the integral extreme generators. So one would expect the
denominator to be (1 —#2)(1—¢3)(1 —¢*) in our case. The generalization to the nonsimplicial
case uses the degrees of a homogeneous system of parameters (see [11, p. 200]). Normaliz
can compute such a denominator if the computation goal HSOP is set (rationalHSOP.in):
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Hilbert series (HSOP):
1113432

denominator with 3 factors:
2:1 3:1 4.1

Note that the degrees of the elements in a homogeneous system of parameters are by no means
unique and that there is no optimal choice in general. To find a suitable sequence of degrees
Normaliz must compute the face lattice of the cone to some extent. Therefore be careful not
to ask for HSOP if the cone has many support hyperplanes.

2.5.1. The series with vertices?

It is tempting to define the polytope by the input type vertices. This choice makes the com-
putation inhomogeneous, a mode that is mainly meant for (potentially) unbounded polyhedra.
But it can be used for polytopes as well, and with this input type you can compute all of the data
that we have seen above. You must ask for the EhrhartSeries instead of the HilbertSeries.
The file rational_inhom.inis

amb_space 2
vertices 3
1/2 1/2 1
-1/3 -1/3 1
1/4 -1/2 1
EhrhartSeries

Nevertheless, there is also use for HilbertSeries in the inhomogeneous case. But then the
grading must be defined on the affine space of the polytope (and not on the cone over the

polytope). See Sections[7.1]and

2.5.2. The rational polytope by inequalities

We extract the support hyperplanes of our polytope from the output file and use them as input
(poly_ineq.in):

amb_space 3
inequalities 3
-8 23

1-10

2 73

grading
unit_vector 3
HilbertSeries

At this point we have to help Normaliz because it has no way to guess that we want to inves-
tigate the polytope defined by the inequalities and the choice x3 = 1. This is achieved by the
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specification of the grading that maps every vector to its third coordinate.

This is the first time that we used the shortcut unit_vector <n> which represents the n-th unit
vector e, € R and is only allowed for input types which require a single vector.

These data tell us that the polytope, as a subset of R, is defined by the inequalities

—8x1+2x+3 >0,
x1—x2+02>0,
2x1+7x+3 > 0.

These inequalities are inhomogeneous, but we are using the homogeneous input type inequalities
which amounts to introducing the grading variable x3 as explained above.

The inequalities as written above look somewhat artificial. It is certainly more natural to write
them in the form

8x1 —2xp <3,
X1 —X2 Z 07
2x1 + Txy > —3.

and for the direct transformation into Normaliz input we have introduced the type hom_constraints.

The prefix hom indicates that we want homogeneous inequalities whereas plain constraints

that we have already seen in Section[2.3.3]gives inhomogeneous inequalities. The file poly_hom_const.in
contains

amb_space 3
hom_constraints 3
8 -2 <=3

1 -1>=0

27 >= -3
grading
unit_vector 3
HilbertSeries

You can of course also switch to inhomogeneous input using inhom_inequalities or constraints
in the same way as polytope can be replaced by vertices.

2.6. Magic squares

Suppose that you are interested in the following type of “square”

X1 | X2 | X3
X4 | X5 | Xg
X7 | X8 | X9
and the problem is to find nonnegative values for xp, .. .,x9 such that the 3 numbers in all rows,

all columns, and both diagonals sum to the same constant .#. Sometimes such squares are
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called magic and .# is the magic constant. This leads to a linear system of equations

X1 +x0+x3 =x4+x5+X6;
X| + X2 + X3 = X7 + Xg + Xo;
X1 +x2+x3 =x1+x4+x7;
X1 +x0+x3 =xp +x5+x3;
X1+ X2 + X3 = X3 + X6 +Xo;
X1 +x2+x3 =x1+x5+X9;
X1 +x0 +x3 =x3+x54+x7.

This system is encoded in the file 3x3magic.in:

amb_space 9

equations 7
111-1-1-1 06 0 0
111 0 06 0 -1-1-1
011-1 0 06-1 06 0
101 0-1 0 0-1 0
1106 0 6-1 0 0 -1
011 6-1 6 0 0 -1
1106 0-1 0-1 0 0
grading

sparse 1:1 2:1 3:1;

The input type equations represents homogeneous equations. The first equation reads

X1+x0+x3—x4 —x5—x6 =0,

and the other equations are to be interpreted analogously. The magic constant is a natural

choice for the grading. It is given in sparse form, equivalent to the dense form

grading
111000000

It seems that we have forgotten to define the cone. This may indeed be the case, but doesn’t
matter: if there is no input type that defines a cone, Normaliz chooses the positive orthant, and

this is exactly what we want in this case.

The output file contains the following:

5 Hilbert basis elements

5 lattice points in polytope (Hilbert basis elements of degree 1)
4 extreme rays

4 support hyperplanes

embedding dimension = 9
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rank = 3
external index =1

size of triangulation
resulting sum of |det|s

1]
AN

grading:
111000000
with denominator = 3

The input degree is the magic constant. However, as the denominator 3 shows, the magic
constant is always divisible by 3, and therefore the effective degree is .# /3. This degree is
used for the multiplicity, the Hilbert series, and the Hilbert basis elements of degree 1, and
other date depending on the degree.

By introducing the grading denominator, Normaliz has changed the grading defined by you,
and you may not like this. There is a way out: add the option NoGradingDenom. We will
discuss the consequences below.

degrees of extreme rays:
1: 4

Hilbert basis elements are of degree 1

This was not to be expected (and is no longer true for 4 x 4 squares).

multiplicity = 4

Hilbert series:

121

denominator with 3 factors:

1: 3

degree of Hilbert Series as rational function = -1

Hilbert polynomial:
122
with common denominator =1

The Hilbert series is
142t +1¢2

(1=1)°
The Hilbert polynomial is
P(k) = 1+ 2k +24k%,

and after substituting .# /3 for k we obtain the number of magic squares of magic constant
A , provided 3 divides .#. (If 31 . , there is no magic square of magic constant .#.)
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2: 2

rank of class group =1
finite cyclic summands:

So the class group is Z & (7/27)?.

5

021210102
102210021
111111111
120012201
201012120

lattice points in polytope (Hilbert basis elements of degree 1):

0 further Hilbert basis elements of higher degree:

The 5 elements of the Hilbert basis represent the magic squares

2101 1 2
1|2 21110
1121]0 01211

{1 112]0 0 1
1 1|2 21110
11 2101 11012

All other solutions are linear combinations of these squares with nonnegative integer coeffi-
cients. One of these 5 squares is clearly in the interior:

4 extreme rays:

021210102
102210021
120012201
201012120

4 support hyperplanes:
-2 -100 40000
0-100 20000

0 100 00000

2 100 -20000

These 4 support hyperplanes cut out the cone generated by the magic squares from the linear
subspace they generate. Only one is reproduced as a sign inequality. This is due to the fact that
the linear subspace has submaximal dimension and there is no unique lifting of linear forms

to the full space.

6 equations:

10000 1-2-1
01000 1-2 0
00100 1-1-1
00010 -1 2 0
00061 -1 1 0
00000 3 -4-1

3 basis elements of generated lattice:
10-1-20 2 1 0-1
61-1-10 1 1-1 0
0606 3 41-2-1 2 2

So one of our equations has turned out to be superfluous (why?). Note that also the equations
are not reproduced exactly. Finally, Normaliz lists a basis of the efficient lattice E generated

by the magic squares.

Note that the equations and the lattice basis are not uniquely determined. We transform their
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matrices into reduced row echelon form to force unique output files.

2.6.1. Blocking the grading denominator

As mentioned above, one can block the grading denominator and force Normaliz to use the
input grading. For the magic squares we augment the input file as follows (3x3magicNGD. in):

amb_space 9
equations 7
111-1-1-1 0 0 O

1106 0-1 0-1 0 0
grading

sparse 1:1 2:1 3:1;
NoGradingDenom

The consequences:

grading:
111000000

degrees of extreme rays:
3: 4

multiplicity = 4/9
multiplicity (float) = 0.444444444444

Hilbert series:

1002001

denominator with 3 factors:

3: 3

degree of Hilbert Series as rational function = -3

The numerator of the Hilbert series is symmetric.

Hilbert series with cyclotomic denominator:
-100-200 -1

cyclotomic denominator:

1: 3 3: 3

Hilbert quasi-polynomial of period 3:

0: 962
l1: 000
2: 000

with common denominator = 9
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rank of class group =1
finite cyclic summands:
2: 2

>k 3K >k 3k >k 5k K 5k >k 3k 3K 3k 3K 3k 5k 3k ok K 5k >k 5k >k Sk K 5k K 5k 3K k3K 3k 3k 3k 5k 3k 5k >k 5k >k 3k >k 5k >k Sk K 3k K K 3K K 3K K 5k 3k 5k >k 5K >k 3k >k 5k >k sk Kk Kk Kk Kk

0 lattice points in polytope (Hilbert basis elements of degree 1):

It is easy to relate the data with the grading denominator to those without. You must decide
yourself what you prefer. One aspect is whether one prefers intrinsic data (with grading de-
nominator) to extrinsic ones that depend on the embedding (without the grading denominator).
We will discuss the topic again in Section

2.6.2. With even corners

We change our definition of magic square by requiring that the entries in the 4 corners are all
even. Then we have to augment the input file by the following (3x3magiceven.in):

congruences 4 sparse
1:1 10:2;
3:1 10:2;
7:1 10:2;
9:1 10:2;

This sparse form is equivalent to the dense form

congruences 4

1000000002
001000006002
0000O00OO10OO2
00000000612

The first 9 entries in each row represent the coefficients of the coordinates in the homogeneous
congruences, and the last is the modulus:

x1=0 mod?2

is the first congruence etc.

We could also define these congruences as symbolic constraints:

constraints 4 symbolic
x[1] ~ 0(2);
x[3] ~ 0(2);
x[7] ~ 0(2);
x[9] ~ 0(2);

The output changes accordingly:
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9 Hilbert basis elements

0 lattice points in polytope (Hilbert basis elements of degree 1)
4 extreme rays

4 support hyperplanes

embedding dimension = 9
rank = 3
external index = 4

size of triangulation = 2
resulting sum of |det|s = 8
grading:

111000000

with denominator = 3
degrees of extreme rays:

2: 4

multiplicity =1

Hilbert series:

1-131

denominator with 3 factors:
1:'1 2: 2

degree of Hilbert Series as rational function = -2

Hilbert series with cyclotomic denominator:

-11 -3 -1
cyclotomic denominator:
1: 3 2: 2

Hilbert quasi-polynomial of period 2:
0: 221

1: -101

with common denominator = 2

After the extensive discussion in Section|2.5|it should be easy for you to write down the Hilbert
series and the Hilbert quasipolynomial. (But keep in mind that the grading has a denominator.)

rank of class group =1
finite cyclic summands:
4: 2

Kok ok oK ok ok oK K oK ok K ok oK koK oK K ok ok oK ok oK ok K ok K ok ok oK ok K ok oK K oK ok K ok ok ok ok K ok oK oK K oKk ok ok K oK K KOk K K K
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0 lattice points in polytope (Hilbert basis elements of degree 1):

9 further Hilbert basis elements of higher degree:

4 extreme rays:

042420204
204420042
240024402
402024240

We have listed the extreme rays since they have changed after the introduction of the congru-
ences, although the cone has not changed. The reason is that Normaliz always chooses the
extreme rays from the efficient lattice [E.

4 support hyperplanes:

6 equations:
3 basis elements of generated lattice:
10-1-206 2 1 0-1
2 congruences: 061-1-10 1 1-1 0
1000000002 006 3 41-2-1 2 2
0100100002

The rank of the lattice has of course not changed, but after the introduction of the congruences
the basis has changed.

2.6.3. The lattice as input

It is possible to define the lattice by generators. We demonstrate this for the magic squares
with even corners. The lattice has just been computed (3x3magiceven_lat.in):

amb_space 9

lattice 3

© 1231-10 12
2-1211 10 30
0 3011 12 -12
grading
111000000

It produces the same output as the version starting from equations and congruences.

lattice has a variant that takes the saturation of the sublattice generated by the input vectors
(3x3magic_sat.in):

’amb,space 9
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saturation 3

6 1231-10 12
2-1211 10 30
© 3011 12 -12
grading
111000000

Clearly, we remove the congruences by this choice and arrive at the output of 3x3magic.in.

2.7. Decomposition in a numerical semigroup

Let S = (6,10, 15), the numerical semigroup generated by 6, 10, 15. How can 97 be written as
a sum in the generators?

In other words: we want to find all nonnegative integral solutions to the equation

6x1 + 10x2 + 15x3 = 97.

Input (NumSemi. in):

amb_space 3
constraints 1 symbolic
6x[1] + 10x[2] + 15x[3] = 97;

The equation cuts out a triangle from the positive orthant.

The set of solutions is a module over the monoid M of solutions of the homogeneous equation
6x1 + 10x3 + 15x3 = 0. So M = 0 in this case.

6 lattice points in polytope (module generators):
2151
243
271
713
741
12111

1
1
1
1

0 Hilbert basis elements of recession monoid:

The last line is as expected, and the 6 lattice points (or module generators) are the goal of the
computation.

Normaliz is smart enough to recognize that it must compute the lattice points in a polygon,
and does exactly this. You can recognize it in the console output: Normaliz 3.10.1 has used
the project-and-lift algorithm. We will discuss it further in Section [2.13]and Section

For those who like to play: add the option --NoProjection to the command line. Then the
terminal output will change; Normaliz computes the lattice points as a truncated Hilbert basis
via a triangulation (only one simplicial cone in this case).
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2.8. A job for the dual algorithm

We increase the size of the magic squares to 5 X 5. Normaliz can do the same computation
as for 3 x 3 squares, but this will take some minutes. Suppose we are only interested in the
Hilbert basis, we should use the dual algorithm for this example. (The dual algorithm goes
back to Pottier [34].) The input file is 5x5dual.in:

amb_space 25
equations 11
11111-1-1-1-1-1 0 6 0 06 0 6 0 06 0 6 0 06 0 0 O

11110 06 06 6-1 6 06 0-1 © 0 0-1 6 6 6-1 06 06 0 0
grading

1111100000000000000000000

HilbertBasis

The input file does not say anything about the dual algorithm mentioned in the section title.
With this input it is chosen automatically. See Section for a discussion of when this
happens. But you can insist on the dual algorithm by adding DualMode to the input (or -d to
the command line). Or, if you want to compare it to the primal algorithm add PrimalMode (or
-P to the command line).

The Hilbert basis contains 4828 elements, too many to be listed here.
With the file 5x5.1in you can compute the Hilbert basis and the Hilbert series, and the latter
with HSOP:

Hilbert series (HSOP):

1 15 356 4692 36324 198467 ... 198467 36324 4692 356 15 1
denominator with 15 factors:

1: 5 2: 3 6: 2 12: 1 60: 2 420: 1 1260: 1

degree of Hilbert Series as rational function = -5

The numerator of the Hilbert Series is symmetric.

In view of the length of the numerator of the Hilbert series it may be difficult to observe the
symmetry. So Normaliz does it for you. The symmetry shows that the monoid is Gorenstein,
but if you are only interested in the Gorenstein property, there is a much faster way to check it
(see Section|[/.7).

The size 6 x 6 is out of reach for the Hilbert series, but the Hilbert basis can be computed (in
the automatically chosen dual mode). It takes some hours.
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2.9. A dull polyhedron

We want to compute the polyhedron defined by the inequalities

&2 2 _1/27
52 S 3/27
& <& +3)2.
They are contained in the input file InhomIneq.in:

amb_space 2

constraints 3

01>=-1/2

01<= 3/2

-11<= 3/2

grading

unit_vector 1

FVector

The grading says that we want to count points by the first coordinate, namely along the green
lines:

It yields the output

2 module generators

1 Hilbert basis elements of recession monoid

2 vertices of polyhedron

1 extreme rays of recession cone

3 support hyperplanes of polyhedron (homogenized)

f-vector:
1231

The empty set is the intersection of all facets, and this gives the first entry 1. Then we have 2
vertices, 3 edges, and finally the full polyhedron.

The out put continues:

embedding dimension = 3
affine dimension of the polyhedron = 2 (maximal)
rank of recession monoid = 1
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size of triangulation
resulting sum of |det|s =

Il
0

dehomogenization:
001

grading:
100

The interpretation of the grading requires some care in the inhomogeneous case. We have
extended the input grading vector by an entry O to match the embedding dimension. For the
computation of the degrees of lattice points in the ambient space you can either use only the
first 2 coordinates or take the full scalar product of the point in homogenized coordinates and
the extended grading vector.

module rank = 2
multiplicity = 2

The module rank is 2 in this case since we have two “layers” in the solution module that are
parallel to the recession monoid. This is of course also reflected in the Hilbert series.

Hilbert series:

11

denominator with 1 factors:
1: 1

shift = -1

We haven’t seen a shift yet. It is always printed (necessarily) if the Hilbert series does not start
in degree 0. In our case it starts in degree —1 as indicated by the shift —1. We thus get the
Hilbert series

-1 t+t - f_l +1

IS T o

Note: We used the opposite convention for the shift in Normaliz 2.

Note that the Hilbert (quasi)polynomial is always computed for the unshifted monoid defined
by the input data. (This was different in previous versions of Normaliz.)

degree of Hilbert Series as rational function = -1
Hilbert polynomial:

2

with common denominator =1

>k 3K >k 3k >k 5k K 5k 3K 3k 3K 3k 3K 3k 5k 3k ok 3k 5k >k 5k >k Sk K Sk K k3K 3k 3K 3k 3k 3k 5K 5k 5k >k 5K >k 3k >k 5k >k Sk K 5k 3K K 3K K 3k K 5k 3k 5k >k 3K >k 3k >k 3k >k sk Kk Kk Kk Kk

2 module generators:
-101
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011

1 Hilbert basis elements of recession monoid:
100

2 vertices of polyhedron:
-4 -12
0 32

extreme rays of recession cone:
00

=

support hyperplanes of polyhedron (homogenized):
-2 3
21
-2 3

N © © W

The dual algorithm that was used in Section [2.8| can also be applied to inhomogeneous com-
putations. We would of course loose the Hilbert series. In certain cases it may be preferable
to suppress the computation of the vertices of the polyhedron if you are only interested in the
integer points; see Section [5.6]

2.9.1. Defining it by generators

If the polyhedron is given by its vertices and the recession cone, we can define it by these data
(InhomIneg_gen.in):

amb_space 2
vertices 2

-4 -1 2

0 32

cone 1

10

grading
unit_vector 1

The output is identical to the version starting from the inequalities.

2.10. The Condorcet paradox

In social choice elections each of the k voters picks a linear preference order of the n candi-
dates. There are n! such orders. The election result is the vector (xp,...,xy), N = n!, in which
x; 1s the number of voters that have chosen the i-th preference order in, say, lexicographic enu-
meration of these orders. (Thus x| 4 ---4+xy = k.) In the following we assume the impartial
anonymous culture according to which every election result has the same probability if the
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number of voters is fixed.

We say that candidate A beats candidate B if the majority of the voters prefers A to B. As the
Marquis de Condorcet (and others) observed, “beats” is not transitive, and an election may
exhibit the Condorcet paradox: there is no Condorcet winner. (See [19]] and the references
given there for more information.)

We want to find the probability for k — oo that there is a Condorcet winner for n = 4 candidates.
The event that A is the Condorcet winner can be expressed by linear inequalities on the election
outcome (a point in 24-space). The wanted probability is the lattice normalized volume of the
polytope cut out by the inequalities at k = 1. The file Condorcet. in:

amb_space 24

inequalities 3

111111-1-1-1-1-1-1 1 1-1-1 1-1 1 1-1-1 1-1
1111111 1-17-11-1 -1-1-1-1-1-1 1 1 1-1-1-1
111111 1 1 1-1-1-1 11 1-1-1-1 -1-1-1-1-1-1
nonnegative

total_degree

Multiplicity

The first inequality expresses that A beats B, the second and the third say that A beats C and
D. (So far we do not exclude ties, and they need not be excluded for probabilities as k — oo.)

In addition to these inequalities we must restrict all variables to nonnegative values, and this
is achieved by adding the attribute nonnegative. The grading is set by total_degree. It
replaces the grading vector with 24 entries 1. Finally Multiplicity sets the computation
goal.

From the output file we only mention the quantity we are out for:

multiplicity = 1717/8192
multiplicity (float) = 0.209594726562

Since there are 4 candidates, the probability for the existence of a Condorcet winner is 1717/2048 =
0.209595.

We can refine the information on the Condorcet paradox by computing the Hilbert series.
Either we delete Multiplicity from the input file or, better, we add --HilbertSeries (or
simply -q) on the command line. The result:

Hilbert series:

1 5 133 363 4581 8655 69821 100915 ... 12346 890 481 15 6
denominator with 24 factors:

1:'1 2: 14 4: 9

degree of Hilbert Series as rational function = -25

If your executable of Normaliz was built with CoCoALib (see Section [[2), for example the
executables for Linux or Mac OS from our distribution or in the Docker image, it uses sym-
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metrization for the computation of the Hilbert series. If not, then simply disregard any remark
on symmetrization. Everything runs very quickly also without it.

If symmetrization has been used, you will also find a file Condorcet.symm.out in your direc-
tory. It contains the data computed for the symmetrization. You need not care at this point.
We take continue the discussion of symmetrization in Section

2.10.1. Excluding ties

Now we are more ambitious and want to compute the Hilbert series for the Condorcet para-
dox, or more precisely, the number of election outcomes having A as the Condorcet winner
depending on the number k of voters. Moreover, as it is customary in social choice theory, we
want to exclude ties. The input file changes to CondorcetSemi.in:

amb_space 24

excluded_faces 3

111111-1-1-1-1-1-1 1 1-1-1 1-1 1 1-1-1 1-1
111111 11-1-11-1 -1-1-1-1-1-1 1 1 1-1-1-1
111111 111-1-1-1 111-1-1-1 -1-1-1-1-1-1
nonnegative

total_degree

HilbertSeries

We could omit HilbertSeries, and the computation would include the Hilbert basis. The
type excluded_faces only affects the Hilbert series. In every other respect it is equivalent to
inequalities.

From the file CondorcetSemi.out we only display the Hilbert series:

Hilbert series:

6 15 481 890 12346 ... 100915 69821 8655 4581 363 133 51
denominator with 24 factors:

1:'1 2: 14 4: 9

shift =1

degree of Hilbert Series as rational function = -24

Surprisingly, this looks like the Hilbert series in the previous section read backwards, roughly
speaking. This is true, and one can explain it as we will see below.

It is justified to ask why we don’t use strict_inequalities instead of excluded_faces.
It does of course give the same Hilbert series. However, Normaliz cannot (yet) apply sym-
metrization in inhomogeneous computations. Moreover, the algorithmic approach is different,
and according to our experience excluded_faces is more efficient, independently of sym-
metrization.

See Section for more information on excluded_faces.
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2.10.2. At least one vote for every preference order

Suppose we are only interested in elections in which every preference order is chosen by at
least one voter. This can be modeled as follows (Condorcet_one.in):

amb_space 24

inequalities 3

1111117-17-1-1-1-1-12 1 1-1-1 1-1 1 1-1-1 1-1
111111 1 1-1-1 1-1 -1-1-1-1-1-1 1 1 1-1-1-1
11111171 11-1-1-1 11 1-1-1-1 -1-1-1-1-1-1
strict_signs

111111111111111111111111

total_degree

HilbertSeries

The entry 1 at position i of the vector strict_signs imposes the inequality x; > 1. A —1 would
impose the inequality x; < —1, and the entry 0 imposes no condition on the i-th coordinate.

Hilbert series:

1 5 133 363 4581 8655 69821 100915 ... 12346 890 481 15 6
denominator with 24 factors:

1:' 1 2: 14 4: 9

shift = 24

degree of Hilbert Series as rational function = -1

Again we encounter (almost) the Hilbert series of the Condorcet paradox (without side con-
ditions). It is time to explain this coincidence. Let C be the Condorcet cone defined by the
nonstrict inequalities, M the monoid of lattice points in it, /; C M the ideal of lattice points
avoiding the 3 facets defined by ties, I; the ideal of lattice points with strictly positive coordi-
nates, and finally /3 the ideal of lattice points in the interior of C. Moreover, let 1 € 7%* be the
vector with all entries 1.

Since 1 lies in the three facets defining the ties, it follows that I, = M + 1. This explains why
we obtain the Hilbert series of I, by multiplying the Hilbert series of M by #>*, as just observed.
Generalized Ehrhart reciprocity (see [11, Theorem 6.70]) then explains the Hilbert series of I;
that we observed in the previous section. Finally, the Hilbert series of /3 that we don’t have
displayed is obtained from that of M by “ordinary” Ehrhart reciprocity. But we can also obtain
I from I3: I} = Iz — 1, and generalized reciprocity follows from ordinary reciprocity in this
very special case. (Also see [16].)

The essential point in these arguments (apart from reciprocity) is that 1 lies in all support
hyperplanes of C except the coordinate hyperplanes.

You can easily compute the Hilbert series of I3 by making all inequalities strict.

As the terminal output shows, symmetrization has not been applied for the reason mentioned
above: strict_signs is an inhomogeneous input type. It would of course be possible to
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encode the strict signs as excluded_faces. Then the sparse format of matrices is very handy:

excluded_faces 24
1:1;
1:2;

1:24;

This is a shorthand for the unit matrix.

2.10.3. The f-vector with codimension bound

Suppose we are interested in the f-vector of the cone defined by Condorcet.in. In view of the
rather high dimension the face lattice must be expected to be extremely large, but computing
the f-vector to codimension 4 should be no problem. (See [[10] for the Normaliz face lattice
algorithm.) Indeed it is not. We use CondorcetFV.in:

FVector
face_codim_bound 4

Then we find in the output file:

f-vector (possibly truncated):
17550 2925 351 27 1

Note that the face numbers are listed by descending codimension or, equivalently, by increas-
ing dimension. The leftmost number is the number of faces in the highest codimension that
has been computed. So we have 17550 codimension 4 faces.

2.11. Testing normality

We want to test the monoid A4x4x3 defined by 4 x 4 x 3 contingency tables for normality
(see [12] for the background). The input file is A443.1in:

amb_space 40
cone_and_lattice 48
1000000000000 00010000000DOD0OD0OD0O0100O00O0DO0ODODO0O0OOOD

OO0OOODODOOOOOOOOOOD1O0ODODODODODOOOOO1O00O00O00O00O00O00OODODODOT1
HilbertBasis

Why cone_and_lattice? Well, we want to find out whether the monoid is normal, i.e.,
whether M = C(M) Ngp(M). If M is even integrally closed in Z?*, then it is certainly inte-
grally closed in the evidently smaller lattice gp(M ), but the converse does not hold in general,
and therefore we work with the lattice generated by the monoid generators.

It turns out that the monoid is indeed normal:
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original monoid is integrally closed in chosen lattice

Actually the output file reveals that M is even integrally closed in Z?*: the external index is 1,
and therefore gp(M) is integrally closed in Z2*,

The output file also shows that there is a grading on Z>* under which all our generators have
degree 1. We could have seen this ourselves: Every generator has exactly one entry 1 in the
first 16 coordinates. (This is clear from the construction of M.)

A noteworthy detail from the output file:

size of partial triangulation = 48

It shows that Normaliz uses only a partial triangulation in Hilbert basis computations; see [12].

It is no problem to compute the Hilbert series as well if you are interested in it. Simply add -q
to the command line or remove HilbertBasis from the input file. Then a full triangulation is
needed (size 2,654,272).

Similar examples are A543, A553 and A643. The latter is not normal, as we will see below. Even
on a standard PC or laptop, the Hilbert basis computation does not take very long because
Normaliz uses only a partial triangulation. The Hilbert series can still be determined, but the
computation time will grow considerably since the it requires a full triangulation. See [15] for
timings.

2.11.1. Computing just a witness

If the Hilbert basis is large and there are many support hyperplanes, memory can become an
issue for Normaliz, as well as computation time. Often one is only interested in deciding
whether the given monoid is integrally closed (or normal). In the negative case it is enough
to find a single element that is not in the original monoid — a witness disproving integral
closedness. As soon as such a witness is found, Normaliz stops the Hilbert basis computation
(but will continue to compute other data if they are asked for). We look at the example A643.1in
(for which the full Hilbert basis is not really a problem):

amb_space 54
cone_and_lattice 72
1000000000000 0OODOO0OODOOOOO1O ...

0000 O0OO0ODOOOOODOODOOOOODOOOOLOO ...
WitnessNotIntegrallyClosed

Don’t add HilbertBasis because it will overrule IsIntegrallyClosed!

The output:

72 extreme rays
153858 support hyperplanes
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embedding dimension = 54

rank = 42

external index 1

internal index =1

original monoid is not integrally closed in chosen lattice

witness for not being integrally closed:
00101111001001010110110060611100606116060611 ...

grading:
11111111111111111111111100000000000 ...

degrees of extreme rays:
1: 72

3k >k 5k 5k 3k >k 5k 5k 3k >k 5k 5k 3k >k 5k 5k 5k 5k 5k 5k 3k >k 5k 5k 5k >k >k 5k 3k 5k >k 5k 5k 5k >k 5k 3k %k >k 5k 5k 5k >k 5k 5k 5k K 5k 5k 3k >k 5k 5k 5k >k 5k 5k 3k >k 5k 5k 3k >k 5k 5k kK k 5k >k k

72 extreme rays:
00O00DOO0ODOOOOOODODOODODOODODOOOD1OODOOODOOODOOOO ...

If you repeat such a computation, you may very well get a different witness if several parallel
threads find witnesses. Only one of them is delivered.

If you just want to check integral closedness as quickly as possible, replace WitnessNotIntegrallyClosed
by IsIntegrallyClosed. Normaliz first checks some necessary conditions. If they are satis-

fied, the calculation of the Hilbert basis is started. If it finds a witness for not being integrally

closed, the witness is displayed in the output.

2.12. Convex hull computation/vertex enumeration

Normaliz computes convex hulls as should be very clear by now, and the only purpose of
this section is to emphasize that Normaliz can be restricted to this task by setting an explicit
computation goal. By convex hull computation we mean the determination of the support
hyperplanes of a polyhedron is given by generators (or vertices). The converse operation is
vertex enumeration. Both amount to the dualization of a cone, and can therefore be done by
the same algorithm.

As an example we take the input file cyclicpolytope30-15.in, the cyclic polytope of dimen-
sion 15 with 30 vertices (suggested by D. Avis and Ch. Jordan):

/* cyclic polytope of dimension 15 with 30 vertices x/
amb_space 16

polytope 30

111111111111111

2 48 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

30 900 27000 810000 ... 478296900000000000000 14348907000000000000000
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SupportHyperplanes

|

Already the entries of the vertices show that the computation cannot be done in 64 bit arith-
metic. But you need not be worried. Just start Normaliz as usual. It will simply switch to

infinite precision by itself, as shown by the terminal output (use the option -c or - -Verbose).

AP |

Normaliz 3.2.0 A

\.. .

(C) The Normaliz Team, University of Osnabrueck \..|
January 2017 \.|

\|

3k 3k 3k Sk 3k >k ok Sk 3k 3k ok ok 3k >k ok Sk Sk 3k 3k Sk Sk 3k 3k ok Sk 3k 3k ok Sk 3k 3k ke Sk 3k 3k ok Sk sk 3k ok Sk 3k 3k ok Sk 3k 3k ok ok skok ok ok k koK ok sk kok
Compute: SupportHyperplanes

Could not convert 15181127029874798299.

Arithmetic Overflow detected, try a bigger integer type!
Restarting with a bigger type.

3k 3k 3k Sk Sk 5k 5k 5k 3K 3K 3K 3K >k 3k 3k 3k 3k 3k 3k Sk Sk Sk Sk Sk 5k 5k 5k 3k 3k 3k >k 3k 3k 3k 3k 3k Sk Sk ok Sk Sk ok ok ok >k >k >k 3k 3k >k 3kosk sk skoskoskook ok ko k.
starting primal algorithm (only support hyperplanes)
Generators sorted lexicographically

Start simplex 1234567 89 10 11 12 13 14 15 16
gen=17, 72 hyp

gen=18, 240 hyp

gen=19, 660 hyp

gen=20, 1584 hyp

gen=21, 3432 hyp

gen=22, 6864 hyp

gen=23, 12870 hyp

gen=24, 22880 hyp

gen=25, 38896 hyp

gen=26, 63648 hyp

gen=27, 100776 hyp

gen=28, 155040 hyp

gen=29, 232560 hyp

gen=30, 341088 hyp

Pointed since graded

Select extreme rays via comparison ... done.

transforming data... done.

Have a look at the output file if you are not afraid of 341088 linear forms.

If you have looked closely at the terminal output above, you should have stumbled on the lines

Could not convert 15181127029874798299.
Arithmetic Overflow detected, try a bigger integer type!

They show that Normaliz has tried the computation in 64 bit integers, but encountered a num-
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ber that is too large for this precision. It has automatically switched to infinite precision. (See
Section [5.3]for more information on integer types.)

2.13. Lattice points in a polytope and its Euclidean volume

The computation of lattice points in a polytope can be viewed as a truncated Hilbert basis
computation, and we have seen in preceding examples. But Normaliz can be restricted to
their computation, with homogeneous as well as with inhomogeneous input. Let us look at
ChF_8_1024.1in:

amb_space 8

constraints 16

0.10976576 0.2153132834 ... 0.04282847494 >= -1/2
0.10976576 -0.2153132834 ... -0.04282847494 >= -1/2
0.10976576 0.2153132834 ... 0.04282847494 <= 1/2
0.10976576 -0.2153132834 ...-0.04282847494 <= 1/2
LatticePoints

ProjectionFloat

This example comes from numerical analysis; see Ch. Kacwin, J. Oettershagen and T. Ullrich,
On the orthogonality of the Chebyshev-Frolov lattice and applications, Monatsh. Math. 184
(2017), 425-441). Its origin explains the decimal fractions in the input. Normaliz converts
them immediately into ordinary fractions of type numerator/denominator, and then makes the
input integral as usual.

In the output file you can see to what integer vectors Normaliz has converted the inequalities
of the input file:

16 support hyperplanes of polyhedron (homogenized):
5488288000 10765664170 ... 2141423747 25000000000

-5488288000 10765664170 ... 2141423747 25000000000

The option ProjectionFloat indicates that we want to compute the lattice points in the poly-
tope defined by the inequalities and that we want to use the floating point variant of the
project-and-lift algorithm; Projection would make Normaliz use its ordinary arithmetic in
this algorithm. For our example the difference in time is not really significant, but when you
try VdM_16_1048576.in, it becomes very noticeable. Let us have a look at the relevant part of
then terminal output:

Polyhedron is parallelotope

Computing lattice points by project-and-1ift
LLL based on support hyperplanes

Projection

embdim 9 inequalities 16
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embdim 6 inequalities 140

embdim 2 inequalities 2
embdim 1 inequalities 0
Lifting

Lifting to dimension 2

Lifting to dimension 3

Lifting to dimension 8
Lifting to dimension 9
embdim 2 LatticePoints 5
embdim 3 LatticePoints 21

embdim 8 LatticePoints 907
embdim 9 LatticePoints 1067
Project-and-1ift complete

We start with embedding dimension 9 since we need a homogenizing coordinate in inhomoge-
neous computations. Then the polytope is successively projected onto a coordinate hyperplane
until we reach a line segment given by 2 inequalities. In the second part Normaliz lifts the lat-
tice points back through all projections. The following figure illustrates the procedure for a
polygon that is projected to a line segment.

The green lines show the fibers over the lattice points in the (red) line segment. Note that
not every lattice point in the projection must be liftable to a lattice point in the next higher
dimension.

In ChF_8_1024.0ut we see

1067 lattice points in polytope (module generators):
-4 0 06 06 0 O

o O ©
[

Normaliz finds out that our polytope is in fact a parallelotope. This allows Normaliz to sup-
press the computation of its vertices. We are not interested in them, and they look frightening
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when written as ordinary fractions (computed with the additional option SupportHyperplanes).
This is only the first vertex, the denominator is the number in the last row:

256 vertices of polyhedron:
-7831972155307708173239167258085974255845869779051329651906336771582421875
-2560494334732147696394408175864650673712115229853232268085759500000000000
2411932924117448250036041241683237083742860005142447171295674845000000000
-2170682283899852950367663781367299946065844697990214478942400250000000000
1846013540077621750562232333569651551559659207659438074760922800500000000
-1450403531662801634587765586956338287943865886737024582718631750000000000
999055328718773316303519268629091038893656784654239444024061220000000000
-509313990522468215816366827427428831508901797188810249435062450000000000
2292486335803169657316823615602461625422283571089603408672092012129842506

Not all polytopes are parallelotopes, and in most cases Normaliz must compute the vertices or
extreme rays as an auxiliary step, even if we are not interested in them. You can always add
the option

NoExtRaysOutput

if you want to suppress their output. (The numerical information on the number of extreme
rays etc. will however be included in the output file if it is available.) Similarly one can
suppress the output of support hyperplanes by

NoSuppHypsOutput

On the other hand, the information provided by the vertices or support hyperplanes may be
important. Instead of the unreadable integer output shown above, you can ask for

VerticesFloat

Then the vertices of polyhedra are printed in floating point format:

256 vertices of polyhedron:
-3.41637 -1.11691 1.0521 ... 0.435796 -0.222167
-3.41637 -0.946868 0.435796 ... -1.0521 0.632677

Note that they can only be printed if a polyhedron is defined. This is always the case in
inhomogeneous computations, but in the homogeneous case a grading is necessary. There is
also a variant ExtremeRaysFloat.

Similarly we can get the support hyperplanes in floating point format (they are only defined
up to a positive scalar multiple) by

SuppHypsFloat

resulting in

16 support hyperplanes of polyhedron (homogenized):
-0.219532 -0.430627 -0.405641 ... -0.168022 -0.0856569
-0.219532 -0.365068 -0.168022 ... 0.405641 0.24393
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By its construction, our polytope should have Euclidean volume 1024. We can confirm this
number by computing the volume, using the option

Volume, -V

We get

volume (normalized) = 205078125000...00/49670537275735342575...58763
volume (normalized, float) =41287680.0308
volume (Euclidean) = 1024.00000076

The result makes us happy, despite of the small inaccuracy of the floating point computation
on which the Euclidean volume is based. See Section for a discussion of volumes and
multiplicities.

2.14. The integer hull

The integer hull of a polyhedron P is the convex hull of the set of lattice points in P (despite of
its name, it usually does not contain P). Normaliz computes by first finding the lattice points
and then computing the convex hull. The computation of the integer hull is requested by the
computation goal IntegerHull.

The computation is somewhat special since it creates a second cone (and lattice) Ciy. In
homogeneous computations the degree 1 vectors generate Cj,; by an input matrix of type
cone_and_lattice. In inhomogeneous computations the module generators and the Hilbert
basis of the recession cone are combined and generate Cj,;. Therefore the recession cone is
reproduced, even if the polyhedron should not contain a lattice point.

The integer hull computation itself is always inhomogeneous. The output file for Cj, is
<project>.IntHull.out.

As a very simple example we take rationalIH.in (rational.in augmented by IntegerHull):

amb_space 3
cone 3

112

-1 -13
1-214
grading
unit_vector 3
HilbertSeries
IntegerHull

It is our rational polytope from Section[2.5] We know already that the origin is the only lattice
point it contains. Nevertheless let us have a look at rationalIH.IntHull.out:

1 vertices of polyhedron
0 extreme rays of recession cone
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1 support hyperplanes of polyhedron (homogenized)
embedding dimension = 3

affine dimension of the polyhedron = 0

rank of recession monoid = @ (polyhedron is polytope)
internal index =1

Kok ok oK ok oK oK K oK ok K ok oK 3 oK oK K ok o oK K oK ok oK ok K ok ok ok oK ok K ok oK oK ok K ok ok ok ok oK ok oK oK K oK K ok oK K oK K Kk K K K

1 vertices of polyhedron:
001

0 extreme rays of recession cone:

=

support hyperplanes of polyhedron (homogenized):
01

(<]

2 equations:
00
10

o =

1 basis elements of generated lattice:
001

Since the lattice points in P are already known, the goal was to compute the constraints defin-
ing the integer hull. Note that all the constraints defining the integer hull can be different from

those defining P. In this case the integer hull is cit out by the 2 equations.

As a second example we take the polyhedron of Section [2.9] The integer hull is the “green”

polyhedron:

The input is InhomIneqIH.in (InhomIneq.in augmented by IntegerHull). The data of the

integer hull are found in InhomIneqIH.IntHull.out:

2 vertices of polyhedron:
-101
011
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extreme rays of recession cone:
00

P

support hyperplanes of polyhedron (homogenized):
-11
10
-11

= o ©o Ww

2.15. Inhomogeneous congruences

We want to compute the nonnegative solutions of the simultaneous inhomogeneous congru-
ences

x1+2x0 =3 (7),
2x1+2x =4 (13)

in two variables. The input file InhomCong.in is

amb_space 2

constraints 2 symbolic
x[1] + 2x[2] ~ 3 (7);
2x[1] + 2x[2] ~ 4 (13);

This is an example of input of symbolic constraints. We use ~ as the best ASCII character for
representing the congruence sign =.

Alternatively one can use a matrix in the input As for which we must move the right hand side
over to the left.

amb_space 2
inhom_congruences 2
12 -37

22 -4 13

It is certainly harder to read.

The first vector list in the output:

3 module generators:

0541
1 11
80 01

Easy to check: if (1,1) is a solution, then it must generate the module of solutions together
with the generators of the intersections with the coordinate axes. Perhaps more difficult to
find:

6 Hilbert basis elements of recession monoid:
0910
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1380

3230 1 vertices of polyhedron:
5 80 0091

12 10

91 0 0

Strange, why is (0,0, 1), representing the origin in R?, not listed as a vertex as well? Well the
vertex shown represents an extreme ray in the lattice E, and (0,0, 1) does not belong to E.

2 extreme rays of recession cone:
0910
91 0 0

3 support hyperplanes of polyhedron (homogenized)
001
0610
100

1 congruences:
58 32 1 91

Normaliz has simplified the system of congruences to a single one.

3 basis elements of generated lattice:
10 33
01 -32
00 91

Again, don’t forget that Normaliz prints a basis of the efficient lattice E.

2.15.1. Lattice and offset

The set of solutions to the inhomogeneous system is an affine lattice in R?. The lattice basis
of [E above does not immediately let us write down the set of solutions in the form w + Ly with
a subgroup Ly, but we can easily transform the basis of E: (1,1,1) is in E and we use it to
reduce the third column of the other two basis elements to 0. Try the file InhomCongLat.in:

amb_space 2
offset

11

lattice 2
58

-12 -1
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2.15.2. Variation of the signs

Suppose we want to solve the system of congruences under the condition that both variables
are negative (InhomCongSigns.in):

amb_space 2
inhom_congruences 2
12 -37

22 -413

signs

-1 -1

The two entries of the sign vector impose the sign conditions x; < 0 and x, < 0.

From the output we see that the module generators are more complicated now:

4 module generators:
-11 01

-4 -71

-2 -221

0 -37 1

The Hilbert basis of the recession monoid is simply that of the nonnegative case multiplied by
—1.

2.16. Integral closure and Rees algebra of a monomial ideal

Next, let us discuss the example MonIdeal.in (typeset in two columns):

amb_space 5

rees_algebra 9

1212 10314
3113 5101
2510 2415
0243 2224
0234

The input vectors are the exponent vectors of a monomial ideal [ in the ring K[X,X>, X3, X4].
We want to compute the normalization of the Rees algebra of the ideal. In particular we can
extract from it the integral closure of the ideal. Since we must introduce an extra variable T,
we have amb_space 5.

In the Hilbert basis we see the exponent vectors of the X;, namely the unit vectors with last
component 0. The vectors with last component 1 represent the integral closure / of the ideal.

There is a vector with last component 2, showing that the integral closure of I? is larger than .

16 Hilbert basis elements:
00010
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51011
65222

11 generators of integral closure of the ideal:
0234

5101

The output of the generators of I is the only place where we suppress the homogenizing vari-
able for “historic” reasons. If we extract the vectors with last component 1 from the extreme
rays, then we obtain the smallest monomial ideal that has the same integral closure as /.

10 extreme rays:
00010

51011

The support hyperplanes which are not just sign conditions describe primary decompositions
of all the ideals I¥ by valuation ideals. It is not hard to see that none of them can be omitted for

large k (for example, see: W. Bruns and G. Restuccia, Canonical modules of Rees algebras. J.
Pure Appl. Algebra 201, 189-203 (2005)).

23 support hyperplanes:

000 06 1
0 ...
601 3-13

2.16.1. Only the integral closure of the ideal

If only the integral closure of the ideal is to be computed, one can choose the input as follows
(IntCWMonId.in):

amb_space 4
vertices 9
12121
22241
cone 4
1000
0100

0010
0001

The generators of the integral closure appear as module generators in the output and the gen-
erators of the smallest monomial ideal with this integral closure are the vertices of the polyhe-
dron.
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3. Affine monid algebras and binomial ideals by
examples

The role of binomials in the computation of affine monoids and their algebras is briefly ex-
plained in Sections[A.8|and[A.9] We assume that the user is familiar with them.

3.1. Computations for affine monids

3.1.1. Input and default computation goals

Affine monoids are given to Normaliz by the input type
monoid

as in monoid.in:

amb_space 3
monoid 6
100

w o r OoN
w N = U

3
0
1
1
10

/* grading 1 -2 1x/
/*HilbertSeriesx/
/*GroebnerBasisx*/
/*xLexx/
/+*MarkovBasis*/
/*gb_degree_bound 11x/
/+*gb_min_degree 9x/
/*Multiplicity*/
/*SingularLocus*/
/*CodimSingularLocusx*/
/*IsSerreRlx/

Positivity of the monoid does not mean that all components of the input vectors are nonnega-
tive. It only means that x = O if both x and —x belong to it.

Let us translate this example into multiplicative notation. We have binomials in K[X], X7, X3],
namely
My =X, My=X{XX;, ..., Mg=X;X.

In the output file we see

original monoid is not integrally closed in chosen lattice
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Hilbert basis elements:
1

N Wk OB OO
w R PR o o
U o N W o

5 support hyperplanes:
6 01
6 10
1 00
2 -31
5 -157

The support hyperplanes re those of the cone generated by the monoid. They are used in aux-
iliary computations, for example in finding the Hilbert basis, i.e., the unique minimal system
of generators of our monoid. In this case the input vectors are all in the Hilbert basis, but thins
need not be the case. The Hilbert basis is ordered by degree and lexicographically within each
degree. In fact, we have a grading

grading:
111

For the default choice of the grading we start from the standard grading on the ambient lattice.
Then the grading, whether the default choice or an explicit grading in the input, is divided
by the greatest common divisor of he degrees of the generators. In the context of mono-
mial algebras it is the most natural choice. The division by the gcd can be suppressed by
NoGradingDenom. In our example the ged is 1.

Our monoid actually has another grading, in which all generators have degree 1: grading 1 -2 1
in the input file. Activate it and study the changes.

Note: The input type monoid is close to cone_and_lattice if the monoid is normal.But there
are two differences in the default choices: (1) The default computation goals and (2) the
default grading. In fact, for monoid is is derived from the standard grading on the ambient
lattice, whereas or cone_and_lattice it gives degree 1 to the extreme integral generators,
provided this is possible.

The input type monoid allows fewer computationn goals nd options than cone_and_lattice.
These are

HilbertBasis HilbertSeries IsIntegrallyClosed Multiplicity
Grading IsSerreRl HilbertQuasiPolynomial Automorphisms
MarkovBasis Representations AmbientAutomorphisms SingularlLocus
GroebnerBasis CodimSingularLocus InputAutomorphisms Revlex

Lex DegLex

Automorphism groups of monoids are discussed in Secion [/.22.7
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3.1.2. Markov and Grobner bases, Representations

The purpose of the computations in this section is to understand the defining ideal of the
subalgebra A of K[X,X>,X3]| generated by our binomials Mj,..., Mg introduced above. To
this end we activate

MarkovBasis
in monoid. in, the Markov basis is computed and returned in the file with suffix
mrk file containing the Markov basis

In our case monoid.mrk:

7

6

10-1-110
-202-101
-101-211
210 -1-1-1
000-321
111-300
0612-2-10

Each column corresponds to an input vector, and the rows aee indeed relations: the scalar
product of a row listed in the Markov basis and a column of the matrix monoid is 0. The
binomials in P = K[Y},...,Ys] corresponding to the rows in the Markov basis form a system
of generators of the binomial ideal defining our monoid algebra as a residue class ring of P.
The binomials are

by =YYs—Y3Yy, by =YY —YV3,..., by = Yo,Y} —Y}Ys.
and indeed the binomials vanish if we substitute M; for Y;, i = 1,...,7. That they generate the
defining ideal is claimed by Normaliz.
For easier reference the input matrix is mirrored in the file with suffix

ogn file with the original generators

in our case monoid.ogn:

6

W o R OoNF W
R R 2o W o
S W N P Ul O

In order to compute a Grobner basis of our binomial ideal, we activate

GroebnerBasis
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and get the output file with suffix
grb containing the Grobner basis.

For the Grobner basis one has to choose a monomial order. The default choice is degree
reverse lexicographic” In our case it yields

8

6

-1011-10
06003-2-1
10-12-1-1
20-210 -1
0612-2-10
1110 -2 -1
210 -1-1-1
30-301-1

More precisely: the indeterminates in the polynomial ring housing the binomials are ordered
Y] > ...Ys and we take the degree reverse lexicographic extension, where* degree” means the
total standard degree on the polynomial ring P. The file with suffix ogn is also created for
the Grobner basis. There is no output of the (minimal) Markov basis, unless you ask for it
explicitly.

Despite of being the default choice, the degree reverse lexicographic order is in the list of
pertaining computation goals:

RevLex degree reverse lexicographic order (with respect to the standard grading on the poly-
nomial ring)
Lex lexicographic order
DegLex gegree lexicographic order (with the same degree as RevLex)

Activate also Lex in our example and see what changes. DeglLex is taken with respect to
the total standard degree as well, and makes no difference in our case, since the generating
binomials are homogeneous in this grading. It is also possoible to apply a weight vector
specified by

gb_weight

Its length is the number of variables of the binomial ideal. For the input type monoid it is
the number of input generators of the monoid. (For lattice_ideal and toric_ideal it is
amb_space; see below.) Monomials of egual weight must be distinguished by a monomial
order that serves as a tie bgreaker. The choices are RevLex (default) or Lex. (DegLex has a fixed
weight namely the standard grading.) Note that the entries of the weightb vector musat be pos-
itive if RevLex is the tie breaker, and nonnnegative for Lex. An example (monoid_weight.in):

amb_space 3
monoid 6
100

310
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GroebnerBasis
gb_weight
123456

and the Grobner basis is

9

6
-1011-10
-1-1-1300
-202-101
0-1-2210
-101-211
-2-10111
1-1-3120
-1-1-1021
2-1-4030

Warning: Don’t confuse grading and gb_weight. The binoimials must be homogeneous
polynomials for the grading so that the grading has no effect on picking the initial monomial.
Therefore a grading (or homogeneous weight) has no effect on the Grobner basis compouta-
tion.

A grading of the monomial algebra induces a grading on the binomials in its defining ideal
such that the latter are homogeneous polynomials. With respect to this grading the output of
Markov and Grobner bases can be restricted:

gb_degree_bound <n> sets upper degree bound <n> for binomials,
gb_min_degree <n> sets lower degree bound <n> for binomials.

There is one more computation goal for monoids that complements HilbertBasis (switched
on by default):

Representations representations of reducible elements in monoid in terms of the Hilbert
basis

The outpur is a list of binomials in the file with suffix
rep representations of reducible elements in terms of the Hilbert basis.
Also the file with suffix ogn is written.

As a simple example we consider representations.in

amb_space 3
monoid 8
00

© R © © N
R R O K~k W
W N = = U
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310

125
Representations
/*BinomialsPackedx*/

with

4 Hilbert basis elements:
001
100
011
310

and representations of the other 4 elements in the input:

4

8
-10-1-11000
00-1-20100
-10-2-30001
-21-3-20000

The entries 1 in each row mark the reducible elements and the row should be read as a binomial
vanishing on the input vectors (or monomials).

If you want to see computations that take longer than our toy example so far, run A443monoid. in
and Kwak80.in.

3.1.3. Hilbert series and multiplicity

If we activate both (!) HilbertSeries and Multiplicity in monoid. in, the result is

multiplicity = 19/40
multiplicity (float) = 0.475

Hilbert series:
110032-2-162-4061-3140011
denominator with 3 factors:

1:1 2:1 20:1

followed by the representation with cyclotomic denominator and the Hilbert quasipolyno-
mial.Activate grading 1 -2 1 and observe the changes.

3.1.4. Binomial ideals from cone input

Defining binomial ideals can be computed not only for monoids defined by the input type
monoid, but also for the monoids that defined by other input types as intersections of cones and
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lattices, for example cone, cone_and_lattice, equations, inequalities etc.In the case of
generator input there are actually two monoids, the “original monoid” as discussed in Section
and its integral closure in the lattice defined by the input. So, if we ask for the Markov
basis of the defining ideal, which monoid is taken? Answer: always the integral closure
generated by its Hilbert basis, unless the property makes only sense for the original monoid:
if we ask IsIntegrallyClosed, the answer is always ‘yes” for the integral closure.

As an example we take cone_latt_markov.in (monoid.in with a different input type):

amb_space 3
cone_and_lattice 6
100

5
1
2
3

w o oN
= = o W

10
MarkovBasis
SingularLocus

The output file contains

original monoid is not integrally closed in chosen lattice

codim singular locus = 2
18 Markov basis elements

>k 3K 3K 5k >k 5k 3K 5k 3K 3k 3K 3k 3k 3k 5k 3k 5k K 5k >k 5k >k 5k >k 5k K 5k 3K 3k 3k 3k ok 3k ok 3k ok 3k ok >k ok >k 5k K Sk K k3K k3K 3k ok 3k ok 3k ok >k ok kok Rk Kk Kk R koK kok >k

lattice points in polytope (Hilbert basis elements of degree 1):
1

W N NNRFRFRFRRFROOOV
R W NE NP O R O
o U1l WKL &~ NOW

0 further Hilbert basis elements of higher degree:

The Markov basis is contained in cone_latt_markov.mrk:

18
9
-10100100 -1
000-10200 -1
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©-100200-10

The columns correspond to the Hilbert basis elements in the order they are listed above. For
completeness the file with suffix ogn is written also in this case. It contains the Hilbert basis
as listed in the out file.

The singular locus has codimension 2, the minimum for a normal monoid (algebra). The
singular locus is stored in cone_latt_markov.sng.

We could equally well start from the inequalities defining the integral closure (the generators
above generate the lattice R?) in cone_latt_markov_supp.in,

amb_space 3
inequalities 5
06 01

0 10

1 00

2 -31
5-157
MarkovBasis
SingularLocus

with the same result as above, except that there is no originl monoid.

Sinc ethe number of monoid generaors is impossible to predict for cone input, it is not possible
to givea weight vevctor.

3.2. Monoids from binomials
As an example, we consider the binomial ideal generated by
YiY, — Y4YsYs, V(Y —Y3YsYs, YiVoY3 —Y2¥s.

in the polynomial ring P = K[Y},...,Ys]. We want to find an embedding of the toric ring it
defines. When we say “defines”, then we do not claim that the residue ring P/I is a toric ring.
But there is a unique smallest binomial ideal J D I with this property, and Normaliz finds the
monoid and, if wanted, also a Markov (or Grébner) basis of J. A priori R = P/J is only defined
as a residue class ring. It doesn’t have a “canonical” embedding into another polynomial ring,
but Normaliz computes such an embedding if the monoid underlying R/J is positive. As
pointed out already, non-positive affine monoids an only be computed by Normaliz if they are
normal.

3.2.1. Affine monoids from binomial ideals

The input type that asks for a toric ring from binomial input is

toric_ideal
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The input vectors are obtained as the differences of the two exponent vectors in the binomials.
So the input ideal toric_ideal.in for ur 3 binomials is

amb_space 6
toric_ideal 3

21 0 -1-1 -1
10-1 2-1 -1
11 1 0 -2 -1

/* total_dgegree x/

In order to avoid special input rules for this case in which our object is not defined as a
subset of an ambient space, but as a quotient of type generators/relations, we abuse the name
amb_space: it determines the space in which the input vectors live.

It is possible to define a grading. It must give positive degree to the unit vectors of the
ambient space and degree 0 to the vectors representing the binomials so that the latter become
homogeneous polynomials with respect to this grading.

In the output we get

original generators:
0

6
1
2
0
1
0
3

H PR ® Wo
© W N R~ U

namely the residue classes of the indeterminates realized in an embedding. Test the binomials
on the original generators! We know this monoid already from monid.in, and you can try the
other computation goals discussed for the latter.

We see

grading:
111

So Normaliz uses the standard grading on the ambient polynomial ring into which R/J has
been embedded. This is the default choice, as it is for the input type monolid. Our toric ring
actually has its own standard tgrading: activate total_degree in the input file and look at
the output. In fact, the binomials above are homogeneous in the standard gading on P, and
total_degree sets this grading.

The generators are repeated (in this case) in a different order,m as we know already:

6 Hilbert basis elements:
001
100
013
112
310
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235

Now they are sorted by degree and then lexicographically, as we always sort Hilbert bases.

As a trivial example in which the Hilbert basis does not simply repeat the original generators
in a different order, compute lin_bin.in:

amb_space 2
toric_ideal 1
1 -1

The output contains

2 original generators:
1
1

1 Hilbert basis elements:
1

Normaliz transforms toric_ideal into monoid. Therefore onlyx the compuation goals of
monoid are allowed with the exception of AmbientAutomorphisms and InputAutomorphisms.

A weight vector for a Grobner basis computation can be given. Its number of components is
amb_space. Eyample (toric_ideal_grb):

amb_space 6
toric_ideal 3
21 0 -1-1 -1
10-1 2-1 -1
11 1 0 -2 -1
total_degree
GroebnerBasis
gb_weight
123456

Lex

and the Grobner basis is the same as for monoid_weight.in

3.2.2. Normalization of monoids from binomials

One go can a step further, using the input type
normal_toric_ideal

It asks for the normalization of the toric ring defined by the binomials. Innormal_toric_ideal.in
we take the same binomials as above:

amb_space 6
normal_toric_ideal 3
21 0 -1-1 -1
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10-1 2-1 -1
11 1 0-2 -1

In the output file we find

6 original generators:
100

3
0
1
1
1

w o rr oN
S W N = U

N

lattice points in polytope (Hilbert basis elements of degree 1):
001
100

further Hilbert basis elements of higher degree:
3

NN KFH WNR O N
W NNR R R &2
U Ww s O =N

The “original generators" are the same as above, as they should be. Also the default grading
is the same, and the default computation goals are identical as well. But the Hilbert series,
Markov basis, Grobner basis etc. are computed for the normalization, as the user can see by
playing with the commented out computation goals. A weight vector for the Grobner basis is
not allowed since the generators of the normalization are not predictable.

Note: Until version 3.9.4 the input type normal_toric_ideal was called lattice_ideal,
which has a different meaning now and is discussed in the next subsection.

normal_toric_ideal is transformed into cone_and_lattice. Thus all computation goals and
options of cone_and_lattice can be used with the exception of AmbientAutomorphisms and
InputAutomorphisms.

3.3. Lattice ideals

A lattice ideal I in a polynomial ring P is a binomial ideal modulo which all monomials are
nonzerodivisors. This implies that P/J is a monoid ring whose underlying monoid is the
natural image of the monoid of monomials in P. Moreover, it is a cancellative monoid, but not
necessarily affine—the latter property requires torsion freeness additionally. The input type is

lattice_ideal
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Normaliz tests whether the lattice ideral is toric and indicates it in the input file, but does not
automatically treat the input like toric_ideal in the positive case.

A soimple example of a non-toric lattice ideal is non_toric.in

amb_space 4
lattice_ideal 4
2 -200
11-1-1

2 -11 -2

-1 -11 -1
/*GroebnerBasis
DeglLexx/

The default computation goal is MarkovBsis. In our case the result is

4
4
-4 -110
3001
2200
6000

Attention: the last binomial is x? — 1 so that the residue class of x; is a torsion element in the
monoid of residue classes.

For internal reasons and the exchange of data with external programs we can ask

IsLatticeldealToric

In addition to MarkovBasis nd IsLatticeIdealToric there is only one more allowed com-

putation goal, namely GroebnerfBasis. There are no monoid generators for lattice_ideal
(not even if the idfeal is toric).

Note: In versions until 3.9.4 lattice_ideal had the meaning of normal_toric_ideal.
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4. The input file

The input file <project>.in consists of items. There are several types of them:

(1) definition of the ambient space,

(2) matrices with integer or rational entries (depending on the type),

(3) vectors with integer entries,

(4) constraints in tabular or symbolic format,

(5) apolynomial,

(6) computation goals and algorithmic variants,

(7) numerical parameters,

(8) number field definition,

(9) comments.
An item cannot include another item. In particular, comments can only be inserted between
other items, but not within another item. Matrices and vectors can have two different formats,
plain and formatted.

Matrices and vectors are classified by the following attributes:

(1) generators, constraints, accessory,
(2) cone/polyhedron, (affine) lattice,
(3) homogeneous, inhomogeneous.

The line structure is irrelevant for the interpretation of the input, but it is advisable to use it for
the readability of the input file.

The input syntax of Normaliz 2 can still be used. It is explained in Appendix [C]

4.1. Input items
4.1.1. The ambient space and lattice

The ambient space is specified as follows:

amb_space <d>

where <d> stands for the dimension d of the ambient vector space R? in which the geometric
objects live. The ambient lattice A is set to Z¢.

Alternatively one can define the ambient space implicitly by

amb_space auto

In this case the dimension of the ambient space is determined by Normaliz from the first
formatted vector or matrix in the input file. It is clear that any input item that requires the
knowledge of the dimension can only follow the first formatted vector or matrix.

In the following the letter d will always denote the dimension set with amb_space.

An example:
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amb_space 5

indicates that polyhedra and lattices are subobjects of R>. The ambient lattice is Z>.

The first non-comment input item must specify the ambient space.

4.1.2. Plain vectors

A plain vector is built as follows:

<T>

<X>

<T> denotes the type and <x> is the vector itself. The number of components is determined
by the type of the vector and the dimension of the ambient space. At present, all vectors have
length d.

Example:

grading
100

Normaliz allows also the input of sparse vectors. Sparse input is signalized by the key word
sparse as the first entry. It is followed by entries of type <col>:<val> where <col> denotes
the column and <val> the value in that column. (The unspecified columns have entry 0.) A
sparse vector is terminated by the character ; . Example:

grading
sparse 1:1;

One can also set a range of entries in sparse vectors like in

grading
sparse 1:1 3..5:-1 7:1;

which produces the vector (1,0,—1,—1,—1,0,1,0...,0).

For unit vectors vectors there exists a shortcuts. Example:

total_degree
unit_vector 25

4.1.3. Formatted vectors

A formatted vector is built as follows:

<T>

[ <x> 1]
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where <T> denotes the type and <x> is the vector itself. The components can be separated
by white space, commas or semicolons. An example showing all possibilities (not recom-
mended):

grading
[1,0; 0 5]

4.1.4. Plain matrices

A plain matrix is built as follows:

<T> <m>

<x_1>

<X_m=>

Here <T> denotes the type of the matrix, <m> the number of rows, and <x_1>,...,<x_m> are
the rows. Some types allow rational and floating point matrix entries, others are restricted to

integers; see Sections 4.1.9and 4.1.10]

The number of columns is implicitly defined by the dimension of the ambient space and the
type of the matrix. Example (with amb_space 3):

cone 3

1/3 2 3

456

11 12/7 13/21

Normaliz allows the input of matrices in transposed form:

<T> t ranspose <n>
<x_1>

<X_m>

Note that <n> is now the number of columns of the matrix that follows it (assumed to be the
number of input vectors). The number of rows is determined by the dimension of the ambient
space and the type of the matrix. Example:

cone transpose 3
1 0 3/2
01/9 4

is equivalent to

cone 3
1 0

0 1/9
3/2 4
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Like vectors, matrices have a sparse input variant, again signalized by the key word sparse.
The rows are sparse vectors with entries <col>:<val>, and each row is concluded by the
character ;. Also here one can set a range of coordinates to the same value:

Example:

inequalities 2 sparse
1:1 2:-1;
3-5:-1;

chooses the 3 x 3 unit matrix as a matrix of type inequalities. Note that also in case of
transposed matrices, sparse entry is row by row.

Matrices may have zero rows. Such empty matrices like

inhom_inequalities ©

can be used to make the input inhomogeneous (Sectiond.1.16) or to avoid the automatic choice
of the positive orthant in certain cases (Section[4.1.17)). (The empty inhom_inequalities have
both effects simultaneously.) Apart from these effects, empty matrices have no influence on
the computation.

4.1.5. Formatted matrices

A formatted matrix is built as follows:

<T>
[ [<x_1>]

[<x_m>] ]

Here <T> denotes the type of the matrix and <x_1>,...,<x_m> are vectors. Legal separators
are white space, commas and semicolons. An example showing all possibilities (not really
recommended):

cone [

[ 2 1][3/7 41;

[0 1],

[9 10] [11 12/13]
]

Similarly as plain matrices, formatted matrices can be given in transposed form, and they can
be empty.

4.1.6. Constraints in tabular format

This input type is somewhat closer to standard notation than the encoding of constraints in
matrices. The general type of equations and inequalities is
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<x> <rel> <rhs>;

where <x> denotes a vector of length d, <rel> is one of the relations =, <=, >=, <, > and <rhs>
is a number.

Congruences have the form

<x> ~ <int> (<mod>);

where <mod> is a nonzero integer.

Examples:

1/2 -2 >= 0.5
1-1/7 =0
-11~7 (9)

Note: all numbers and relation signs must be separated by white space.

4.1.7. Constraints in symbolic format

This input type is even closer to standard notation than the encoding of constraints in matrices
or in tabular format. It is especially useful if the constraints are sparse. Instead of assigning a
value to a coordinate via its position in a vector, it uses coordinates named x [<n>] where <n>
is the index of the coordinate. The index is counted from 1.

The general type of equations and inequalities is

<lhs> <rel> <rhs>;

where <lhs> and <rhs> denote affine linear function of the x<n> with rational coefficients. As
above, <rel> is one of the relations =, <=, >=, <, >. (Both <lhs> and <rhs> must be nonempty.)
Note the terminating semicolon.

Congruences have the form

<lhs> ~ <rhs> (<mod>);

where <mod> is a nonzero integer and <lhs> and <rhs> are affine linear functions with integer
coefficients.

Examples:

1/3x[1] >= 2x[2] + 5;
x[1]+1=1/4x[2] ;
-x[1] + x[2] ~ 7 (9);

There is no need to insert white space for separation, but it may be inserted anywhere where
it does not disrupt numbers or relation signs.
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4.1.8. Polynomials

For the computation of weighted Ehrhart series and integrals Normaliz needs the input of
a polynomial with rational coefficients. Moreover, one can apply polynomial constraints to
lattice points in polytopes. A polynomial is first read as a string. For the computation the
string is converted by the input function of CoCoALib [2]. Therefore any string representing
a valid CoCoA expression is allowed. However, the names of the indeterminates are fixed:
x[11,...,x[<N> where <N>] is the value of amb_space. The polynomial must be concluded by
a semicolon.

Example:

(X[11+1)*(X[1]+2)*(x[1]43)*x(x[1]1+4)*(x[1]+5)*
(X[21+1) % (x[3]+1) *x (x[4]+1) * (x[5]+1) * (x[6]1+1) * (x[7]+1) %
(x[8]+1)*(x[8]1+2)*x(x[8]+3) *(x[8]+4)*(x[8]+5)*1/14400;

(X[1]*x[2]1#x[31%x[4])"2%(x[1]-x[2])"2%(x[1]-x[3])"2x*
(x[1]-x[4])72%(x[2]-x[3])"2%(x[2] -x[4])"2% (x[3]-x[4])"2;

4.1.9. Rational numbers

Rational numbers are allowed in input matrices, but not in all. They are not allowed in vectors
and in matrices containing lattice generators and in congruences, namely in

lattice cone_and_lattice offset open_facets
congruences inhom_congruences rees_algebra lattice_ideal
grading dehomogenization signs strict_signs

They are allowed in saturation since it defines the intersection of the vector space generated
by the rows of the matrix with the integral lattice.

Avoid negative numbers as denominators.

Normaliz first reduces the input numbers to lowest terms. Then each row of a matrix is mul-
tiplied by the least common multiple of the denominators of its entries. In all applications
in which the original monoid generators play a role, one should use only integers in input
matrices to avoid any ambiguity.

4.1.10. Decimal fractions and floating point numbers

Normaliz accepts decimal fractions and floating point numbers in its input files. These are
precisely converted to ordinary fractions (or integers). Examples:

1.1 --> 11/10 0.5 -->1/2 -.1lel --> -1

It is not allowed to combine an ordinary fraction and a decimal fraction in the same number.
In other words, expressions like 1.0/2 are not allowed.

77



4.1.11. Numbers in algebraic extensions of Q

Their format is explained in Section together with the definition of number fields.

4.1.12. Numerical parameters

Their input has the form

<parameter> <n>

where <n> is the value assigned to <parameter>.

4.1.13. Computation goals and algorithmic variants

These are single or compound words, such as

HilbertBasis
Multiplicity

The file can contain several computation goals, as in this example.

4.1.14. Comments

A comment has the form

/*x <text> x/

where <text> stands for the text of the comment. It can have arbitrary length and stretch over
several lines. Example:

/* This is a comment
x/

Comments are only allowed at places where also a new keyword would be allowed, especially
not between the entries of a matrix or a vector. Comments can not be nested.

4.1.15. Restrictions

Input items can be combined quite freely, but there are some restrictions:

(1) The types
cone, cone_and_lattice, polytope, rees_algebra
exclude each other mutually.
(2) The input type subspace excludes polytope and rees_algebra.
(3) The types
lattice, saturation, cone_and_lattice
exclude each other mutually.
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(4) polytope can not be combined with grading.
(5) The only type that can be combined with lattice_ideal is grading.
(6) The following types cannot be combined with inhomogeneous types or dehomogenization:
polytope, rees_algebra, excluded_faces
(7) The following types cannot be combined with inhomogeneous types:
dehomogenization
(8) Special restrictions apply for the input type open_facets; see Sectiond.13]
(9) Special rules apply if precomputed data are used. See Section[7.23]
(10) For restrictions that apply to algebraic polyhedra see Section [§] Similar restrictions
apply if the input types rational_lattice and rational_offset are used (see Sec-
tion [7.21)).
(11) The input types monoid, toric_ideal, normal_toric_ideal and lattice_ideal al-
loow only grading as a further input type.

A non-restriction: the same type can appear several times. This is useful if one wants to
combine different formats, for example

inequalities 2 sparse
1:1;

1:1 3:-1;
inequalities 2
1101

1-1-10

4.1.16. Homogeneous and inhomogeneous input

Apart from the restrictions listed in the previous section, homogeneous and inhomogeneous
types can be combined as well as generators and constraints. A single inhomogeneous type
or dehomogenization in the input triggers an inhomogeneous computation. The input item of
inhomogeneous type may be an empty matrix.

4.1.17. Default values

If there is no lattice defining item, Normaliz (virtually) inserts the the unit matrix as an input
item of type lattice. If there is no cone defining item, the unit matrix is (additionally) inserted
as an input item of type cone.

If the input is inhomogeneous, then Normaliz provides default values for vertices and the
offset as follows:

(1) If there is an input matrix type lattice, but no offset, then the offset O is inserted.
(2) If there is an input matrix of type cone, but no vertices, then the vertex O is inserted.

An important point. If the input does not contain any cone generators or inequalities, Nor-
maliz automatically assumes that you want to compute in the positive orthant. In order to
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avoid this choice you can add an empty matrix of inequalities, inhom_inequalities or
strict_inequalities. This will not affect the results, but avoid the sign restriction.

4.1.18. Normaliz takes intersections

The input may contain several cone defining items and several lattice defining items. We con-
sider homogeneous input for simplicity. Inhomogeneous input is made homogeneous anyway.

One can subdivide the input items defining cones and lattices as follows:
1. cone generators: together they generate a cone Cy;
2. cone constraints, namely inequalities and equations: they define the cone Cy;
3. lattice generators: they generate the sublattice L; and the vector subspace Uy = RL1;
4

. lattice constraints, namely equations and congruences: they define the sublattice L, and
the vector subspace U, = RL;.

The cone defined by all these data is C=C; N C, NU; NU,. The lattice defined by them is
RCNL;NL,.

4.2. Homogeneous generators

4.2.1. Cones

The main type is cone. The other two types are added for special computations.

cone is a matrix with d columns. Every row represents a vector, and they define the cone
generated by them. Section 2cone.in

subspace is a matrix with d columns. The linear subspace generated by the rows is added to
the cone. Section

polytope is a matrix with d — 1 columns. It is internally converted to cone extending each
row by an entry 1. Section [2.4] polytope.in. This input type automatically sets
NoGradingDenom and defines the grading (0,...,0,1). Not allowed in combination with
inhomogeneous types.

rees_algebra is a matrix with d — 1 columns. It is internally converted to type cone in two
steps: (i) each row is extended by an entry 1 to length d. (i1) The first d — 1 unit vectors
of length d are appended. Section[2.16 MonIdeal.in. Not allowed in combination with
inhomogeneous types.

extreme_rays is a matrix with d columns. See Section for its use.

maximal_subspace is a matrix with d columns. See Section for its use.

Moreover, it is possible to define a cone and a lattice by the same matrix:

cone_and_lattice The vectors of the matrix with d columns define both a cone and a lattice.
Section [2.11] A443.1in.
If subspace is used in combination with cone_and_lattice, then the sublattice gener-
ated by its rows is added to the lattice generated by cone_and_lattice.
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The Normaliz 2 types integral_closure and normalization can still be used. They are
synonyms for cone and cone_and_lattice, respectively.

4.2.2. Lattices

There are 5 types. With the exception of rational_lattice and saturation their entries are

integers.

lattice is a matrix with d columns. Every row represents a vector, and they define the lattice
generated by them. Section[2.6.3] 3x3magiceven_lat.in.

rational_lattice is a matrix with d columns. Its entries can be fractions. Every row repre-

sents a vector, and they define the sublattice of Q¢ generated by them. See Section
ratlat_2.in.

saturation is a matrix with d columns. Every row represents a vector, and they define the lat-
tice U NZ? where U is the subspace generated by them. Section 3x3magic_sat.in.
(If the vectors are integral, then U NZ? is the saturation of the lattice generated by them.)

cone_and_lattice See Section[4.2.1l

generated_lattice is a matrix with d columns. See Section [7.23]for its use.

hilbert_basis_rec_cone is a matrix with d columns. It contains the precomputed Hilbert
basis of the recession cone. See Section [/.23.3]

4.2.3. Affine monoids

monoid is a matrix with d columns. Every row represents a vector, and they generate a szb-
monoid of Z. See Section ??, monoid.in, A443monoid.in.

4.3. Homogeneous Constraints

The coefficients &; of the constraints are rational numbers unless indicated otherwise.

4.3.1. Cones

inequalities is a matrix with d columns. Every row (&i,...,&,) represents a homogeneous
inequality
Eix1+-+8ixg >0

for the vectors (x1,...,x;) € R?. Sections [2.3.2}[2.5.2] 2cone_ineq. in, poly_ineq.in
equations is a matrix with d columns. Every row (&1, ...,&,;) represents an equation

Six1+-+8uxg=0

for the vectors (x1,...,x;) € R?. Section 3x3magic.in
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signs is a vector with d entries in {—1,0,1}. It stands for a matrix of type inequalities
composed of the sign inequalities x; > O for the entry 1 at the i-th component and the
inequality x; < O for the entry —1. The entry O does not impose an inequality. See

Section [2.15.2] InhomCongSigns.in.
excluded_faces is a matrix with d columns. Every row (&;,...,&;) represents an inequality

Eixi+-+Exg >0

for the vectors (x1,...,x7) € R?. It is considered as a homogeneous input type though
it defines inhomogeneous inequalities. The faces of the cone excluded by the inequali-
ties are excluded from the Hilbert series computation, but excluded_faces behave like
inequalities in almost every other respect. Section [2.10.1] CondorcetSemi.in. Also
see Section

support_hyperplanes is a matrix with d columns. See Section [7.23]
A useful shortcut:

nonnegative inserts the sign inequalities x; > O for all coordinates. See Condorcet. in.

4.3.2. Lattices
congruences is a matrix with d+ 1 columns. Eachrow (&, ..., &y, ) represents a congruence
Eizi+-+&1zg=0 modec, &i,ceZ,

for the elements (z,...,74) € Z¢. Section 3x3magiceven.in.

4.4. Inhomogeneous generators

4.4.1. Polyhedra

vertices isamatrix with d+ 1 columns. Eachrow (py,...,p4,q), g > 0, specifies a generator
of a polyhedron (not necessarily a vertex), namely

P1 p
Vi:<_7"'7_n>7 pi€Q7q€@>O7
q q

Section[2.9.1] InhomIneg_gen.in

Note: vertices and cone together define a polyhedron. If vertices is present in the
input, then the default choice for cone is the empty matrix.

The format of vertices was introduced when Normaliz only accepted integer numbers in its
input. There is no need for an extra denominator anymore, but for backward compatibility the
format has not been changed.

The Normaliz 2 input type polyhedron can still be used.
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4.4.2. Affine lattices

offset is a vector with d integer entries. It defines the origin of the affine lattice. Sec-

tion[2.15.1] InhomCongLat.in.

rational_offset is a vector with d rational entries. It defines the origin of the rational affine
lattice. Section ratlat_2.in.

Note: offset and lattice (or saturation) together define an affine lattice. If offset is
present in the input, then the default choice for lattice is the empty matrix.

4.5. Inhomogeneous constraints
4.5.1. Polyhedra

inhom_inequalities is a matrix with d 4 1 columns. We consider inequalities

Eixp 4+ +Exg >,

rewritten as
x4+ &g+ (—m) >0

and then represented by the input vectors

(815584, —M).

Section 2.9 InhomIneq.in.
inhom_equations is a matrix with d 4+ 1 columns. We consider equations

Sixt+-+Exg =1,

rewritten as
Cixi+-+&xg+(—m) =0

and then represented by the input vectors

(&15---,8a,—1).

See Section[2.7NumSemi . in.
strict_inequalities is a matrix with d columns. We consider inequalities

Eixi+-+Euxg > 1,

represented by the input vectors
(517-' '7§d)'

Section[2.3.3] 2cone_int.1in.

strict_signs is a vector with d components in {—1,0,1}. It is the “strict” counterpart to
signs. Anentry 1 in component i represents the inequality x; > 0, an entry —1 the oppo-
site inequality, whereas 0 imposes no condition on x;. Section[2.10.2] Condorcet_one.in
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inhom_excluded_faces is a matrix with d + 1 columns. Every row (&i,...,&;,—1) repre-
sents an inequality

Eixi+-+Exg>1

for the vectors (x1,...,x;) € R%. The faces of the polyhedron excluded by the in-
equalities are excluded from the Hilbert and Ehrhart series series computation, but
inhom_excluded_faces behave like inhom_inequalities in almost every other re-

spect. See Section

4.5.2. Affine lattices

inhom_congruences We consider a matrix with d 4 2 columns. Each row (&,...,&4,—1,¢)
represents a congruence

§1Z1+"'+§d2d577 mod c, éi,n,CEZ»

for the elements (z,...,74) € Z¢. Section InhomCongSigns.in.

4.6. Tabular constraints

constraints <n> allows the input of <n> equations, inequalities and congruences in a for-
mat that is close to standard notation. As for matrix types the keyword constraints
is followed by the number of constraints. The syntax of tabular constraints has been
described in Section If (&1,...,&,) is the vector on the left hand side and 7 the
number on the right hand side, then the constraint defines the set of vectors (xi,...,x;)
such that the relation
Six1 + -+ +8axg rel M

is satisfied, where rel can take the values =, <, >, <, > with the represented by input
strings =, <=,>=, <, >, respectively.

Tabular constraints cannot be used for excluded_faces or inhom_excluded_faces.

A further choice for rel is ~. It represents a congruence = and requires the additional
input of a modulus: the right hand side becomes 1 (c). It represents the congruence

Eixi+...6ixg=n  (mod c).

Sections[2.3.3] 2cone_int.in,[2.6.2] 3x3magiceven.in,[2.9] InhomIneq.in.

A right hand side # 0 makes the input inhomogeneous, as well as the relations < and >. Strict
inequalities are always understood as conditions for integers. So

Eixi+-+Emxg <

is interpreted as
51)61 —i—...ﬁdxd <n-1,
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4.6.1. Forced homogeneity

It is often more natural to write constraints in inhomogeneous form, even when one wants the
computation to be homogeneous. The type constraints does not allow this. Therefore we
have introduced

hom_constraints for the input of equations, non-strict inequalities and congruences in the
same format as constraints, except that these constraints are meant to be for a homo-
geneous computation. It is clear that the left hand side has only d — 1 entries now. See
Section[2.5.2] poly_hom_const.in.

4.7. Symbolic constraints

The input syntax is

constraints <n> symbolic where <n> is the number of constraints in symbolic form that
follow.

The constraints have the form described in Section Note that every symbolic constraint
(including the last) must be terminated by a semicolon.

See Sections[2.7} NumSemi . in,[2.15] InhomCong.in.

The interpretation of homogeneity follows the same rules as for tabular constraints. The vari-
ant hom_constraints is allowed and works as for tabular constraints.

4.8. Converting equations to inequalities

The directive
convert_equations

tells Normaliz to replace eevery equation in the input file by a pair of equations. It is meant
for very large computations of lattice points by project-and-lift since it avoids a coordinate
transformation that is not needed. The default choice of nonnegative in the absence of explicit
inequalities is left untouched by convert_equationst. See pet.in and baby.in (for which
the coordinate transformation would be harmless).

4.9. Polynomial constraints

Normaliz can apply polynomial constraints to lattice points in polytopes. The input syntax is

polynomial_equations <n>
polynomial_inequalities <n>
where <n> is the number of polynomials that follow. The equations defined by a polynomial

f is always given by f(x) = 0, and the inequality is f(x) > 0. Therefore no relation signs or
“right hand sides” are allowed.Don’t forget to conclude every polynomial by a semicolon.
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See pet.in, baby.in and Section

4.10. Binomial ideals

There are three types of input for binomial ideals. The rows of the matrices coming with these
input types represent binomials. The representation nof binomials by vecors is discussed at
the beginjing of Section n3| The mathematics of these input types is discussed in Section ??.

The input types differ in the object computed frtom them.

lattice_ideal is an integer matrix with d columns. The object computed from the binomials
in it is the smallest lattice ideal containing them. Section [3.3] non_toric.in.

toric_ideal is an integer matrix with d columns. The object computed from the binomials
in it is the smallest toric ideal containing them and the toric ring whose defining ideal
the latter is. Section[3.2.1] toric_ideal.in.

normal_toric_ideal is an intehger matrix with d columns. The object computed from
the binomials in it is the the normalization of the toric ring it defines. Section
normal_toric_ideal.in.

4.11. Unit vectors and unit matrix

A grading or a dehomogenization is often given by a unit vector:
unit_vector <n> represents the n-th unit vector in R¢ where n is the number given by <n>.

This shortcut cannot be used as a row of a matrix. It can be used whenever a single vec-
tor is asked for, namely after grading, dehomogenization, signs and strict_signs. See
Section[2.5] rational.in.

The unit matrix can be given to every input type that expects a matrix:
unit_matrix

Example:

cone unit_matrix

The number of rows is defined by amb_space and the type of the matrix, as usual.

4.12. Grading

This type is accessory. A Z-valued grading can be specified in two ways:
(1) explicitly by including a grading in the input, or
(2) implicitly. In this case Normaliz checks whether the extreme integral generators of the

monoid lie in an (affine) hyperplane A given by an equation A(x) = 1 with a Z-linear
form A. If so, then A is used as the grading.

Implicit gradings are only possible for homogeneous computations.
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If the attempt to find an implicit grading causes an arithmetic overflow and verbose has
been set (say, by the option-c), then Normaliz issues the warning

Giving up the check for a grading

If you really need this check, rerun Normaliz with a bigger integer type.

Explicit definition of a grading:

grading is a vector of length d representing the linear form that gives the grading. Section[2.5]
rational.in.

total_degree represents a vector of length d with all entries equal to 1. Section [2.10]
Condorcet.in.

Before Normaliz can apply the degree, it must be restricted to the effective lattice E. Even if
the entries of the grading vector are coprime, it often happens that all degrees of vectors in E
are divisible by a greatest common divisor g > 1. Then g is extracted from the degrees, and it
will appear as denominator in the output file.

Normaliz checks whether all generators of the (recession) monoid have positive degree (after
passage to the quotient modulo the unit group in the nonpointed case). Vertices of polyhedra
may have degrees < 0.

4.12.1. With binomial ideal input

In this case the unit vectors correspond to generators of the monoid. Therefore the degrees
assigned to them must be positive. Moreover, the vectors in the input represent binomial
relations, and these must be homogeneous. In other words, both monomials in a binomial
must have the same degree. This amounts to the condition that the input vectors have degree
0. Normaliz checks this condition.

4.13. Dehomogenization

Like grading this is an accessory type.

Inhomogeneous input for objects in R is homogenized by an additional coordinate and then
computed in R4*! but with the additional condition Xg+1 > 0, and then dehomogenizing all
results: the substitution x;,; = 1 acts as the dehomogenization, and the inhomogeneous input
types implicitly choose this dehomogenization.

Like the grading, one can define the dehomogenization explicitly:
dehomogenization is a vector of length d representing the linear form 6.

The dehomogenization can be any linear form § satisfying the condition §(x) > 0 on the cone
that is truncated. (In combination with constraints, the condition d(x) > 0 is automatically
satisfied since 0 is added to the constraints.)

The input type dehomogenization can only be combined with homogeneous input types, but
makes the computation inhomogeneous, resulting in inhomogeneous output. The polyhedron
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computed is the intersection of the cone C (and the lattice [£) with the hyperplane given by
0(x) = 1, and the recession cone is CN{x: 6(x) = 0}.

A potential application is the adaptation of other input formats to Normaliz. The output must
then be interpreted accordingly.

Section[7.11] dehomogenization.in.

4.14. Weight vector for Grobner bases

For the computation of Grobner bases one can specify a weight vedtor by
gb_weight

It is a vecor with nonnegative entries for Lex as a tiebrteaker and positive entries for RevLeX
(default choice). The length derpends on the type of input. See Section ?? for a discussion
and examples.

4.15. Open facets

The input type open_facets is similar to strict_inequalities. However, it allows to apply
strict inequalities that are not yet known. This makes only sense for simplicial polyhedra
where a facet can be identified by the generator that does not lie in it.

open_facets is a vector with entries € {0,1}.

The restrictions for the use of open facets are the following:
(1) Only the input types cone, vertices and grading can appear together with open_facets.
(2) The vectors in cone are linearly independent.
(3) There is at most one vertex.

The number of vectors in cone may be smaller than d, but open_facets must have d entries.

open_facets make the computation inhomogeneous. They are interpreted as follows. Let v
be the vertex—if there are no vertices, then v is the origin. The shifted C' = v+ C is cut
out by affine-linear inequalities A;(x) > 0 with coprime integer coefficients. We number these
in such a way that A;(v+ ¢;) # 0 for the generators ¢; of C (in the input order), i = 1,...,n.
Then all subsequent computations are applied to the shifted cone C” = V' + C defined by the
inequalities
Ai(x) > u;

where the vector (uy,...,uy) is given by open_facets. (If dimC < d, then the entries u; with
j > dimC are ignored.)

That 1 indicates “open” is in accordance with its use for the disjoint decomposition; see Sec-

tion Section discusses an example.
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4.16. Coordinates for projection

The coordinates of a projection of the cone can be chosen by
projection_coordinates Itis a 0-1 vector of length d.

The entries 1 mark the coordinates of the image of the projection. The other coordinates give
the kernel of the projection. See Section for an example.
4.17. Numerical parameters

Certain numerical parameters used by Normaliz can (only) be set in the input file.

4.17.1. Degree bound for series expansion

It can be set by
expansion_degree <n>
where <n> is the number of coefficients to be computed and printed. See Section|/.10

4.17.2. Number of significant coefficients of the quasipolynomial

It can be set by
nr_coeff_quasipol <n>
where <n> is the number of highest coefficients to be printed. See Section

4.17.3. Codimension bound for the face lattice

It can be set by
face_codim_bound <n>
where <n> is the bound for the codimension of the faces to be computed.

4.17.4. Degree bounds for Markov and Grébbner bases

gb_degree_bound <n> sets the upper bound <n> for Markov and Grobner bases,
gb_min_degree <n> sets the lower bound <n> for Markov and Grobner bases.

4.17.5. Number of digits for fixed precision

The computation of vilumes by signed decomposition can be done with a fixed precision. It is
et by

decimal_digits <n>
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where <n> sets the precision to 107",

4.17.6. Block size for distributed computation

See Appendix [F.T|for an explanation. It is set by

block_size_hollow_tri <n>

4.18. Pointedness

Since version 3.1 Normaliz can also compute nonpointed cones and polyhedra without ver-
tices.

4.19. The zero cone

The zero cone with an empty Hilbert basis is a legitimate object for Normaliz. Nevertheless a
warning message is issued if the zero cone is encountered.

90



5. Computation goals and algorithmic variants

The library libnormaliz contains a class ConeProperties that collects computation goals,
algorithmic variants and additional data that are used to control the work flow in libnormaliz
as well as the communication with other programs. The latter are not important for the Nor-
maliz user, but are listed as a reference for 1ibnormaliz. See Appendix |D|for a description of
libnormaliz.

All computation goals and algorithmic variants can be communicated to Normaliz in two
ways:

(1) in the input file, for example HilbertBasis,

(2) via a verbatim command line option, for example - -HilbertBasis.
For the most important choices there are single letter command line options, for example -N

for HilbertBasis. The single letter options ensure backward compatibility to Normaliz 2. In
jNormaliz they are also accessible via their full names.

Some computation goals apply only to homogeneous computations, and some others make
sense only for inhomogeneous computations.

Some single letter command line options combine two or more computation goals, and some
algorithmic variants imply computation goals.

There are restrictions for algebraic polyhedra. See Section[8.3]

5.1. Default choices and basic rules

If several computation goals are set, all of them are pursued. In particular, computation goals
in the input file and on the command line are accumulated. But
--ignore, -i on the command line switches off the computation goals and algorithmic vari-
ants set in the input file.
The default computation goal is set if neither the input file nor the command line contains
a computation goal or an algorithmic variant that implies a computation goal. The deafault
computatin goal depends on the input type.
e Except the input of a monoid or binomial ideal it is
SupportHyperplanes + HilbertBasis + HilbertSeries .
In the homogeneous case, ClassGroup is included as well.
e Formonoid, toric_ideal and normal_toric _idealitisHilbertBasis+ IsIntegrallyClosed
for the momnoid derived from them.
e For the input type lattice_ideal it is MarkovBasis.

If set explicitly in the input file or on the command line the following adds these computation
goals:

DefaultMode

DefaultMode can be set explicitly in addition to other computation goals. If it is set, implicitly
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or explicitly, Normaliz will not complain about unreachable computation goals.

5.2. Computation goals

Almost always the computation goals set explicitly or by default require the comoputation of
auxiliary data that themselves can be asked for by explicit computation goals. In most cases
the results of these computations appear in the output. In case of doubt set exlicit computation
goals.

5.2.1. Lattice data

Sublattice, -S (upper case S) asks Normaliz to compute the coordinate transformation to
and from the efficient sublattice.

5.2.2. Support hyperplanes and extreme rays

SupportHyperplanes, -s triggers the computation of support hyperplanes and extreme rays.
Normaliz tries to find a grading in the homogeneous case.

VerticesFloat converts the format of the vertices to floating point. It implies SupportHyperplanes.

SuppHypsFloat converts the format of the support hyperplanes to floating point. It implies
SupportHyperplanes.
ExtremeRaysFloat does the same for the extreme rays.

Note that VerticesFloat and SuppHypsFloat are not pure output options. They are computa-
tion goals, and therefore break implicit DefaultMode.

ProjectCone Normaliz projects the cone defined by the input data onto a subspace generated
by selected coordinate vectors and computes the image with the goal SupportHyperplanes.

5.2.3. Hilbert basis and lattice points

HilbertBasis, -N triggers the computation of the Hilbert basis. In inhomogeneous compu-
tations it asks for the Hilbert basis of the recession monoid and the module generators.

WitnessNotIntegrallyClosed, -w With this option, Normaliz stops the Hilbert basis com-
putation as soon it has found a witness confirming that the original monoid is not inte-
grally closed.

DeglElements, -1 restricts the computation to the degree 1 elements of the Hilbert basis in
homogeneous computations (where it requires the presence of a grading).

LatticePoints isidentical to DeglElements in the homogeneous case, but implies NoGradingDenom.
In inhomogeneous computations it is a synonym for HilbertBasis.
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ModuleGeneratorsOverOriginalMonoid, -M computes a minimal system of generators of
the integral closure over the original monoid (see Section[7.18). Requires the existence
of original monoid generators.

The boolean valued computation goal IsIntegrallyClosed is also related to the Hilbert basis;
see Section

5.2.4. Enumerative data

The computation goals in this section require a grading. They include SupportHyperplanes.

HilbertSeries, -q triggers the computation of the Hilbert series.

EhrhartSeries computes the Ehrhart series of a polytope, regardless of whether it is defined
by homogeneous or inhomogeneous input. In the homogeneous case it is equivalent
to HilbertSeries + NoGradingDenom, but not in the inhomogeneous case. See the
discussion in Section Can be combined with HSOP.

Multiplicity, -v restricts the computation to the multiplicity.

Volume, -V computes the lattice normalized and the Euclidean volume of a polytope given
by homogeneous or inhomogeneous input (implies Multiplicity in the homogeneous
case, but also sets NoGradingDenom).

HSOP lets Normaliz compute the degrees in a homogeneous system of parameters and the
induced representation of the Hilbert or Ehrhart series series. Note that HSOP does not
imply HilbertSeries or EhrhartSeries.

NoPeriodBound This option removes the period bound that Normaliz sets for the computation
of the Hilbert quasipolynomial (presently 10°).

NumberLatticePoints finds the number of lattice points. They are not stored.

5.2.5. Combined computation goals

Can only be set by single letter command line options:

-n HilbertBasis + Multiplicity
-h HilbertBasis + HilbertSeries
-p DeglElements + HilbertSeries

5.2.6. The class group

ClassGroup, -C is self explanatory, includes SupportHyperplanes. Not allowed in inhomo-
geneous computations.

5.2.7. Integer hull

IntegerHull, -H computes the integer hull of a polyhedron. Implies the computation of the
lattice points in it.
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More precisely: in homogeneous computations it implies DeglElements, in inhomogeneous
computations it implies HilbertBasis. See Section[2.14]

5.2.8. Triangulation and Stanley decomposition

Triangulation, -T makes Normaliz compute, store and export the full triangulation.

ConeDecomposition, -D Normaliz computes a disjoint decomposition of the cone into semi-
open simplicial cones. Implies Triangulation.

TriangulationSize, -t makes Normaliz count the simplicial cones in the full triangulation.

TriangulationDetSum makes Normaliz additionally sum the absolute values of their deter-
minants.

StanleyDec, -y makes Normaliz compute, store and export the Stanley decomposition.

AllGeneratorsTriangulation makes Normaliz compute and store a triangulation that uses
all generators.

LatticePointTriangulation makes Normaliz compute and store a triangulation that uses all
lattice points in a polytope.
UnimodularTriangulation makes Normaliz compute and store a unimodular triangulation.

The triangulation and the Stanley decomposition are treated separately since they can become
very large and may exhaust memory if they must be stored for output.

Note that these decompositions cannot be computed for a polyhedron that is unbounded (mod-
ulo its maximal subspace). However, they are allowed for polytopes defined by inhomoge-
neous input. UnimodularTriangulation is only allowed in homogeneous computations and
is excluded for algebraic polyhedra.

The following triangulations are defined by the order of the generators. See SEctions
and [7.15.6]

PlacingTriangulation
PullingTriangulation

5.2.9. Face structure

The f-vector of a polyhedron is computed by
FVector

The set of faces of a polyhedron is computed by
FacelLattice

Like the triangulation or Stanley decomposition the face lattice can become very large, and it
is already computed with FVector. FaceLattice writes an extra output file. The details of its
representation in the extra output file are discussed in Section|/.17

The face lattice computation is based on the incidence vectors of the facets. It is possible to
retrieve this matrix (independently of FVector or FaceLattice) via the computation goal

Incidence
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Section[7.17] as well. See it also for the dual versions

DualFVector
DualFacelLattice
DuallIncidence

5.2.10. Semiopen polyhedra

IsEmptySemiopen
asks for the emptiness of a semiopen polyhedron. See Section

5.2.11. Automorphism groups

Automorphism groups are defined in Section

Automorphisms computes the integral automorphisms of rational polyhedra and the algebraic
automorphisms of algebraic polytopes.

RationalAutomorphisms computes the rational automorphisms of rational polytopes.

EuclideanAutomorphisms computes the euclidean automorphisms of rational and algebraic
polytopes.

CombinatorialAutomorphisms computes ate combinatorial automorphisms of polyhedra.

AmbientAutomorphisms computes automorphisms induce by permutations of coordinates of
the ambient space.

InputAutomorphisms computes taional (or algebraic) automorphisms based solely on the in-
put and initial coordinate transformations.

5.2.12. Weighted Ehrhart series and integrals

WeightedEhrhartSeries, -E makes Normaliz compute a generalized Ehrhart series.

VirtualMultiplicity, -L makes Normaliz compute the virtual multiplicity of a weighted
Ehrhart series.

Integral, -I makes Normaliz compute an integral over a polytope. Implies NoGradingDenom.

These computation goals require a homogeneous computation.

Don’t confuse these options with symmetrization. The latter symmetrizes (if possible) the
given data and uses -E or -L internally on the symmetrized object. The options -E, -I, -L ask
for the input of a polynomial. See Section4.1.8

5.2.13. Markov and Grobner bases

They are discussed in Section 3]

MarkovBasis computes a system of generators for a toric ideal defining a monoid or a lattice
ideal.
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GroebnerBasis computes a system of generators for such ideals.
Representations compites the represenztation of the reducible elements in a generating sys-
tem of an affine monoid by the Hilbert basis.
Lex sets the lexicographic monomial order for Grobner bases,
RevLex sets the degree reverse lexicographic order,
DegLex sets the degree lexicographic order.

5.2.14. Local structure

SingularLocus comoputes the singular locus of an affine monoid (algebra),
CodimSingularLocus computes its codimension.

5.2.15. Boolean valued computation goals

They tell Normaliz to find out the answers to the questions they ask. Two of them are more
important than the others since they may influence the course of the computations:

IsIntegrallyClosed : is the original monoid integrally closed? Normaliz stops the Hilbert
basis computation as soon as it can decide whether the original monoid contains the
Hilbert basis (see Section [2.11.1)). Normaliz tries to find the answer as quickly as pos-
sible. This may include the computation of a witness, but not necessarily. If you need a
witness, use WitnessNotIntegrallyClosed, -w.

IdsSerreRl checks the Serre property (R;) for ffine monoids (automatically satisfied by nor-
mal monoids).

IsPointed : is the efficient cone C pointed? This computation goal is sometimes useful to
give Normaliz a hint that a nonpointed cone is to be expected. See Section

For the following we only need the support hyperplanes and the lattice:
IsGorenstein, -G : is the monoid of lattice points Gorenstein? In addition to answering

this question, Normaliz also computes the generator of the interior of the monoid (the
canonical module) if the monoid is Gorenstein. (Only in homogeneous computations.)

The remaining ones:

IsDeglExtremeRays : do the extreme rays have degree 1?7 (Only in homogeneous computa-
tions.)

IsDeglHilbertBasis : do the Hilbert basis elements have degree 1? (Only in homogeneous
computations.)

IsReesPrimary : for the input type rees_algebra, is the monomial ideal primary to the irrel-
evant maximal ideal?

IsLatticeIdealToric asks whether the lattice ideal in the input is actually toric

The last three computation goals are not really useful for Normaliz since they will be answered
automatically. Note that they may trigger extensive computations.
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5.3. Integer type

There is no need to worry about the integer type chosen by Normaliz. All preparatory com-
putations use infinite precision. The main computation is then tried with 64 bit integers. If it
fails, it will be restarted with infinite precision.

Infinite precision does not mean that overflows are completely impossible. In fact, Normaliz
requires numbers of type “degree” fit the type long (typically 64 bit on 64 bit systems). If an
overflow occurs in the computation of such a number, it cannot be remedied.

The amount of computations done with infinite precision is usually very small, but the trans-
formation of the computation results from 64 bit integers to infinite precision may take some
time. If you need the highest possible speed, you can suppress infinite precision completely
by

LongLong

With this option, Normaliz cannot restart a failed computation.

On the other hand, the 64 bit attempt can be bypassed by

BigInt, -B

Note that Normaliz tries to avoid overflows by intermediate results (even if LongLong is set).
If such overflow should happen, the computation is repeated locally with infinite precision.

(The number of such GMP transitions is shown in the terminal output.) If a final result is too
large, Normaliz must restart the computation globally.

LonglLong is not a cone property.

Caveat. The overflow check of Normaliz is not an absolute guarantee. The probability that it
fails is microscopically small, but failure is not totally excluded. Very critical computations
for which one has no other confirmation should be redone in BigInt.

5.4. The choice of algorithmic variants

For its main computation goals Normaliz has algorithmic variants. It tries to choose the variant
that seems best for the given input data. This automatic choice may however be a bad one.
Therefore the user can completely control which algorithmic variant is used.

5.4.1. Primal vs. dual

For the computation of Hilbert bases Normaliz has two algorithms, the primal algorithm that
is based on triangulations, and the dual algorithm that is of type “pair completion”. We have
seen both in Section 2] Roughly speaking, the primal algorithm is the first choice for generator
input, and the dual algorithm is usually better for constraints input. The choice also applies to
the computation of degree 1 elements. However, for them the default choice is project-and-lift
(well, almost always). See Section The conditions under which the dual algorithm is
chosen are specified in Section [7.5]
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The choice of the algorithm can be fixed or blocked:

DualMode, -d activates the dual algorithm for the computation of the Hilbert basis and de-
gree 1 elements. Includes HilbertBasis, unless DeglElements is set. It overrules
IsIntegrallyClosed.

PrimalMode, -P blocks the use of the dual algorithm.

The automatic choice can of course fail. See Section [/.5|for an example for which it is bad.

5.4.2. Lattice points in polytopes

For this task Normaliz has several methods. They are discussed in Section [7.2] The default
choice is the project-and-lift algorithm. It can be chosen explicitly:

Projection, -j
NoProjection blocks it.
Alternative choices are

ProjectionFloat, -J , project-and-lift with floating point arithmetic,

PrimalMode, -P , triangulation based method,

Approximate, -r , approximation of rational polytopes followed by triangulation and
DualMode, -d , dual algorithm.

Note: none of these algorithmic variants implies the computation of the lattice points. They
must be asked for by a computation goal.

The following options modify Projection and ProjectionFloat:

NoLLL blocks the use of LLL reduced coordinates,
NoRelax blocks relaxation.

Both LLL and relaxation are switched on by default. See Section

For positive systems (see Section[7.2.4) Normaliz chooses “coarse projection”, and it may use
a patching variant of project-and-lift. These choices can be blocked by

NoCoarseProjection
NoPatching

Moreover, there are further options by which the order, in which the “patches” are processed,
can be influenced. See Section

5.4.3. Bottom decomposition and order

Bottom decomposition is a way to produce an optimal triangulation for a given set of genera-
tors. It is discussed in Section[7.3] The criterion for its automatic choice is explained there. It
can be forced or blocked:

BottomDecomposition, -b tells Normaliz to use bottom decomposition in the primal algo-
rithm.
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NoBottomDec, -o forbids Normaliz to use bottom decomposition in the primal algorithm,
even if it would otherwise be chosen because of large roughness (see Section[7.3).

An option to be mentioned in this context is

KeepOrder, -k forces Normaliz to insert the generators (for generator input) or the inequal-
ities (for constraint input) in the input order. This option is useful if the input has been
produced in a systematic order that would be destroyed by the degree-lexicogrpahic
order applied by Normaliz. Also blocks BottomDecomposition.

5.4.4. Multiplicity, volume and integrals

For the computation of multiplicities Normaliz offers has three main algorithms:

(1) the computation and evaluation of a full triangulation,
(2) descent in the face lattice,
(3) signed decomposition.

These are described in more detail in Section Moreover, one can use symmetrization (see
below), and (2) has a variant using isomorphism types.

Normaliz tries them by default in the order signed decoposition, descent, symmetritation and
uses the first for which the default conditions are satisfied (as long as there is no need to
compute a full triangulation for other reasons). The last resort is (1).

The options asking explicitly for an algorithm or excluding it are

Descent, -F
NoDescent
SignedDec
NoSignedDec

The variant using isomorphism types can be activated by

Descent ExploitIsosMult

You van ask for

StrictTypeChecking

if you don’t btrust SHA256 hash values. See Section

Another option to be mentioned in this context is

FixedPrecision

It can be applied if the multiplicity is computed by signed decomposition. See Section

For integrals one can chose either the standard triangulation or signed decomposition. In the
latter case FixedPrecision is also available.

If one wants to compute multiplicities (or volumes) with signed decomposition, it is possible
to split the most time consuming part of the computation into blocks that can be processed
independently of each other. It can be asked for by the option

DistributedComp
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Distributed computation is described in Appendix [F1]

5.4.5. Symmetrization

In rare cases Normaliz can use symmetrization in the computation of multiplicities or Hilbert
series. If applicable, this is a very strong tool. We have mentioned it in Section [2.10]and will
discuss it in Section It will be chosen automatically, but can also be forced or blocked:

Symmetrize, -Y lets Normaliz compute the multiplicity and/or the Hilbert series via sym-
metrization (or just compute the symmetrized cone).
NoSymmetrization blocks symmetrization.

The integration involved in symmetrization can be done by signed decomposition.

5.4.6. Subdivision of simplicial cones

Subdivision requires enlarging the set of generators and can lead to a nested triangulation (see
Sections [7.4]and[7.14.1)). The subdivision can be blocked by

NoSubdivision

5.4.7. Options for the grading

By setting
NoGradingDenom

you can force Normaliz not to change the original grading if it would otherwise divide it
by the grading denominator. It is implied by several computation goals for polytopes. See
Section [7.11

NoGradingDenom is set automatically inn inhomogeneous computations.
By
GradingIsPositive

the user guarantees that the grading is positive. This option can be useful in rare cases if
Normaliz would otherwise compute extreme rays only to check the positivity of the grading.

5.5. Control of computations and communication with interfaces

In addition to the computation goals in Section[5.2] the following elements of ConeProperties
control the work flow in libnormaliz and can be used by programs calling Normaliz to ensure
the availability of the data that are controlled by them.

OriginalMonoidGenerators controls the generators of the original monoid.
ModuleGenerators controls the module generators in inhomogeneous computation.
ExtremeRays controls the extreme rays.
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VerticesOfPolyhedron controls the vertices of the polyhedron in the inhomogeneous case.
MaximalSubspace controls the maximal linear subspace of the (homogenized) cone.
EmbeddingDim controls the embedding dimension.

Rank controls the rank.

RecessionRank controls the rank of the recession monoid in inhomogeneous computations.

AffineDim controls the affine dimension of the polyhedron in inhomogeneous computations.

ModuleRank in inhomogeneous computations it controls the rank of the module of lattice
points in the polyhedron as a module over the recession monoid.

ExcludedFaces controls the excluded faces.

InclusionExclusionData controls data derived from the excluded faces.

Grading controls the grading.

GradingDenom controls its denominator.

Dehomogenization controls the dehomogenization.

ReesPrimaryMultiplicity controls the multiplicity of a monomial ideal, provided it is pri-
mary to the maximal ideal generated by the indeterminates. Used only with the input
type rees_algebra.

EuclideanVolume controls the Euclidean volume.

GeneratorOfInterior controls the generator of the interior if the monoid is Gorenstein.

CoveringFace asks for an excluded face making the semiopen polyhedron empty.

Equations controls the equations.

Congruences controls the congruences.

ExternalIndex controls the external index.

InternalIndex controls the internal index.

UnitGroupIndex controls the unit group index.

IsInhomogeneous controls the inhomogeneous case.

HilbertQuasiPolynomial controls the Hilbert quasipolynomial.

EhrhartQuasiPolynomial controls the Ehrhart quasipolynomial.

WeightedEhrhartQuasiPolynomial controls the weighted Ehrhart quasipolynomial.

IsTriangulationNested controls the indicator of this property.

IsTriangulationPartial similar.

5.6. Rational and integer solutions in the inhomogeneous case

The integer solutions of a homogeneous diophantine system generate the rational solutions as
well: every rational solution has a multiple that is an integer solution. Therefore the rational
solutions do not need an extra computation. If you prefer geometric language: a rational cone
is generated by its lattice points.

This is no longer true in the inhomogeneous case where the computation of the rational solu-
tions is an extra task for Normaliz. This extra step is inevitable for the primal algorithm, but
not for the dual algorithm. In general, the computation of the rational solutions is much faster
than the computation of the integral solutions, but this by no means always the case.
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Therefore we have decoupled the two computations if the dual algorithm is applied to inho-
mogeneous systems or to the computation of degree 1 points in the homogeneous case. The
combinations

DualMode HilbertBasis, -dN

DualMode DeglElements, -dl

DualMode ModuleGenerators

DualMode LatticePoints

do not imply the computation goal SupportHyperplanes (and not even Sublattice) which
would trigger the computation of the rational solutions (geometrically: the vertices of the
polyhedron). If you want to compute them, you must add one of

SupportHyperplanes, -s
ExtremeRays
VerticesOfPolyhedron

The last choice is only possible in the inhomogeneous case. Another possibility in the inho-
mogeneous case is is to use DualMode without a restriction.

If Projection or ProjectionFloat is used for parallelotopes defined by inequalities, then
Normaliz does not compute the vertices, unless asked for by one of the three computation
goals just mentioned or the extreme rays are needed for some other computation. The same
holds if the volume of a parallelotope is computed.

6. Running Normaliz

The standard form for calling Normaliz is
normaliz [options] <project>

where <project> is the name of the project, and the corresponding input file is <project>.1in.
Note that normaliz may require to be prefixed by a path name, and the same applies to
<project>. A typical example on a Linux or Mac system:

./normaliz --verbose -x=5 example/big
that for MS Windows must be converted to
.\normaliz --verbose -x=5 example\big
Normaliz uses the standard conventions for calls from the command line:

(1) the order of the arguments on the command line is arbitrary.
(2) Single letter options are prefixed by the character - and can be grouped into one string.
(3) Verbatim options are prefixed by the characters - -.

The options for computation goals and algorithmic variants have been described in Section [5

In this section the remaining options for the control of execution and output are discussed,
together with some basic rules for the use of the options.
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6.1.

Basic rules

The options for computation goals and algorithms variants have been explained in Section [5
The options that control the execution and the amount of output will be explained in the
following. Basic rules for the use of options:

1.
2.

6.2.

If no <project> is given, the program will terminate.

The option -x differs from the other ones: <T> in -x=<T> represents a positive number
assigned to -x; see Section [6.3]

Similarly the option - -OutputDir=<outdir> sets the output directory; see [6.6]
Normaliz will look for <project>.1in as input file.

If you inadvertently typed rafa2416.in as the project name, then Normaliz will first
look for rafa2416.1in.in as the input file. If this file doesn’t exist, rafa2416.in will be
loaded.

. The options can be given in arbitrary order. All options, including those in the input

file, are accumulated, and syntactically there is no mutual exclusion. However, some
options may block others during the computation. For example, KeepOrder blocks
BottomDecomposition.

If Normaliz cannot perform a computation explicitly asked for by the user, it will termi-
nate. Typically this happens if no grading is given although it is necessary.

. In the options include DefaultMode, Normaliz does not complain about missing data

(anymore). It will simply omit those computations that are impossible.

. If a certain type of computation is not asked for explicitly, but can painlessly be produced

as a side effect, Normaliz will compute it. For example, as soon as a grading is present
and the Hilbert basis is computed, the degree 1 elements of the Hilbert basis are selected
from it.

Info about Normaliz

--help, -? displays a help screen listing the Normaliz options.
--version displays information about the Normaliz executable.

6.3.

Control of execution

The options that control the execution are:

--verbose, -c activates the verbose (“‘console”) behavior of Normaliz in which Normaliz

writes additional information about its current activities to the standard output.

-x=<T> Here <T> stands for a positive integer limiting the number of threads that Normaliz is

allowed access on your system. The default value is 8. (Your operating system may set
a lower limit).
-x=0 switches off the limit set by Normaliz.

103



If you want to run Normaliz in a strictly serial mode, choose -x=1.
parallel_threads <T> can be used in the input file instead.

The number of threads can also be controlled by the environment variable OMP_NUM_THREADS.
See Section for further discussion.

If there arSe many polynomials in the input it can be difficult to find an error in them. As a
help ion such cases one can say

list_polynomials

The last polynomial listed has caused the error.

6.4. Interruption

During a computation normaliz can be interrupted by pressing Ctrl-C on the keyboard. If this
happens, Normaliz will stop the current computation and write the already computed data to
the output file(s). By

NoOutputOnInterrupt

the output of data can be blocked. Can be set in the input file or on the command line as a long
option.

If Ctrl-C is pressed during the output phase, Normaliz is stopped immediately.

6.5. Time bound

In order to set a time bound for the execution of Normaliz one creates a file
normaliz.time
in the working directory. It contains a single floating number that bounds the wall clock time

of Normaliz. At present it is only implemented in the project-and-lift algorithm for lattice
points.

6.6. Control of output files

In the default setting Normaliz writes only the output file <project>.out (and the files pro-
duced by Triangulation, StanleyDec and FaceLattice). The amount of output files can be
increased as follows:

--files, -f Normaliz writes the additional output files with suffixes gen, cst, and inv, pro-
vided the data of these files have been computed.

--all-files, -a includes Files, Normaliz writes all available output files (except typ and
those that are automatically written by computation goals).

--<suffix> chooses the output file with suffix <suffix>.

For the list of potential output files, their suffixes and their interpretation see Section[9] There
are several options - -<suffix>.
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If the computation goal IntegerHull is set, Normaliz computes a second cone and lattice.
The output is contained in <project>.IntHull.out. The options for the output of <project>
are applied to <project>.IntHull as well. There is no way to control the output of the two
computations individually.

Similarly, if symmetrization has been used, Normaliz writes the file <project>.symm.out. It
contains the data of the symmetrized cone.

Sometimes one wants the output to be written to another directory. The output directory can
be set by

--OutputDir=<outdir> . The path <outdir> is an absolute path or a path relative to the
current directory (which is not necessarily the directory of <project>.in.)

Note that all output files will be written to the chosen directory. It must be created before
Normaliz is started.

Extreme rays and vertices may have very long integer coordinates. One can suppress their
output by

NoExtRaysOutput

For similar reasons one may want to suppress the output of support hyperplanes, namely by
NoSuppHypsOutput

Similarly,

NoHilbertBasisOutput

supprsesses thze output of Hilbert bases and latticec points. An even more drastic option is
NoMatricesOutput

It suppresses all output after the “preamble”. It is useful in testing large examples where the
numbers of extreme rays, lattice points etc. are usually a good criterion for correctness.

NoExtRaysOutput, NoSuppHypsOutputand NoMatricesOutput are not cone properties.

BinomialsPacked chooses a packed format for files containing binomials. See Section|/.2

6.7. Ignoring the options in the input file

Since Normaliz accumulates options, one cannot get rid of settings in the input file by com-
mand line options unless one uses

--ignore, -i This option disables all options in the input file.
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7. Advanced topics

7.1. Computations with a polytope

In many cases the starting point of a computation is a polytope, i.e., a bounded polyhedron —
and not a cone or monoid. Normaliz offers two types of input for polytopes that allow almost
the same computations, namely

(1) homogeneous input type for which the polytope is the intersection of a cone with a
hyperplane defined by the grading (automatically bounded): P = {x € C : degx = 1}.
(2) inhomogeneous input defining a polytope (and not an unbounded polyhedron).

A problem that can arise with homogeneous input is the appearance of a grading enumerator
g > 1. In this case the polytope P defined by the input grading is replaced by gP. This may be
undesirable and can therefore be blocked by NoGradingDenom. Note: a grading denominator
g > 1 can only appear if the affine space spanned by the polytope does not contain a lattice
point. This is a rare situation, but nevertheless you may want to safeguard against it.

Computation goals whose names have a “polytopal touch” (as opposed to “algebraic touch™)
set NoGradingDenom automatically. These computation goals are also to be used with in-
homogeneous input; see the following table. The homogeneous input type polytope sets
NoGradingDenom as well.

In the following table L is the lattice of reference defined by the input data.

inhom input or hom input
desired data hom input blocking allowing
grading denominator | grading denominator

lattice points LatticePoints DeglElements
number of lattice points | NumberLatticePoints —
convex hull of

lattice points IntegerHull —
generating function of
k— #(kPNL) EhrhartSeries HilbertSeries
volume or
multiplicity Volume Multiplicity
integral Integral —

Note that HilbertSeries and Multiplicity make also sense with inhomogeneous input, but
they refer to a different counting function, namely

k— #(x € PNL,degx =k).

Even if P is a polytope, this function has applications; see Section [7.10.2] Note that inhomo-
geneous input sets NoGradingDenom.
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7.1.1. Lattice normalized and Euclidean volume

As just mentioned, for polytopes defined by homogeneous input Normaliz has two computa-
tion goals, Multiplicity, -v, and Volume, -V, thatare almostidentical: Volume =Multiplicity
+ NoGradingDenom. Both compute the lattice normalized volume; moreover, Volume addi-
tionally computes the Euclidean volume and can also be used with inhomogeneous input, for
which Multiplicity has a different meaning. (For the algebraic origin of Multiplicity see

Appendix [A.6])
In the following we want to clarify the notion of lattice normalized volume.

(1) Let P C R be a polytope of dimension r and let A be the affine subspace spanned by
P. Then the Euclidean volume voleye(P) of P is computed with respect to the r-dimensional
Lebesgue measure in which an r-dimensional cube in A of edge length 1 has measure 1.

(2) For the lattice normalized volume we need a lattice L of reference. We assume that
aff(P) C aff(L). (It would be enough to have this inclusion after a parallel translation of
aff(P).) Choosing the origin in L, one can assume that aff(L) is a vector subspace of R? so
that we can identify it with R after changing d if necessary. After a coordinate transfor-
mation we can further assume that L = Z¢ (in general this is not an orthogonal change of
coordinates!). To continue we need that aff(P) is a rational subspace. There exists k € N such
that kaff(P) contains a lattice simplex. The lattice normalized volume vol;, of kP is then given
by the Lebesgue measure on kaff(P) in which the smallest possible lattice simplex in kaff(P)
has volume 1. Finally we set vol (P) = volz(kP)/k" where r = dim(P).

If P is a full-dimensional polytope in R and L = Z¢, then voly (P) = d! voley(P), but in gen-
eral the correction factor is cr! with ¢ depending on aff(P): the line segment in R? connecting
(1,0) and (0,1) has euclidean length v/2, but lattice normalized volume 1. As this simple
example shows, ¢ can be irrational.

7.1.2. Developer’s choice: homogeneous input

Our recommendation: if you have the choice between homogeneous and inhomogeneous in-
put, go homogeneous (with NoGradingDenom if necessary). You do not lose any computation
goal and can only gain efficiency.

7.2. Lattice points in polytopes once more

Normaliz has three main algorithms for the computation of lattice points of which two have
two variants each:
(1) the project-and-lift algorithm (Projection, -j),
(2) its variant using floating point arithmetic (ProjectionFloat, -J),
(3) the triangulation based Normaliz primal algorithm specialized to lattice points
(PrimalMode, -P),
(4) its variant using approximation of rational polytopes (Approximate, -r),
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(5) the dual algorithm specialized to lattice points (DualMode, -d).

The options Projection, ProjectionFloat and Approximate do not imply a computation
goal. Since PrimalMode can also be used for the computation of Hilbert series and Hilbert
bases, one must add the computation goal to it. In the homogeneous case one must add the
computation goal also to DualMode.

Remark. The triangulation based primal algorithm and the dual algorithm do not depend on
the embedding of the computed objects into the ambient space since they use only data that
are invariant under coordinate transformations. This is not true for project-and-lift and the ap-
proximation discussed below. Often Projection and ProjectionFloat (and in certain cases
also PrimalMode) profit significantly from LLL reduced coordinates (since version 3.4.1). We
discuss this feature in Section[7.2.3

We recommend the reader to experiment with the following input files:

5x5.1in

6x6.1in
max_polytope_cand.in
hickerson-18.1in
knapsack_11_60.in
ChF_2_64.1in
ChF_8_.1024.in
VdM_16_1048576.1in (may take some time)
pedro2.in

pet.in

baby.in

In certain cases you must use -i on the command line to override the options in the input file
if you want to try other options.

max_polytope_cand.in came up in connection with the paper “Quantum jumps of normal
